IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v193y2009i2p499-509.html
   My bibliography  Save this article

Decision-making in testing process performance with fuzzy data

Author

Listed:
  • Wu, Chien-Wei

Abstract

Over the years, numerous process capability indices (PCIs) have been proposed to the manufacturing industry to provide numerical measures of process performance. Most research efforts have focused on developing and investigating PCIs that assess process capability by precise measurements of output quality. However, real observations of continuous quantities are not precise numbers; in practice, they are more or less imprecise. Since observations of continuous random variables are imprecise the values of related test statistics become imprecise. Therefore, decision rules for statistical tests have to be adapted to this situation. This article presents a set of confidence intervals that produces triangular fuzzy numbers for the estimation of Cpk index using Buckley's approach with some modification. Additionally, a three-decision testing rule and step-by-step procedure are developed to assess process performance based on fuzzy critical values and fuzzy p-values. This concept is also illustrated with an example for testing process performance.

Suggested Citation

  • Wu, Chien-Wei, 2009. "Decision-making in testing process performance with fuzzy data," European Journal of Operational Research, Elsevier, vol. 193(2), pages 499-509, March.
  • Handle: RePEc:eee:ejores:v:193:y:2009:i:2:p:499-509
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377-2217(07)01139-3
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lee, Hong Tau, 2001. "Cpk index estimation using fuzzy numbers," European Journal of Operational Research, Elsevier, vol. 129(3), pages 683-688, March.
    2. W L Pearn & Chien-Wei Wu, 2006. "Variables sampling plans with PPM fraction of defectives and process loss consideration," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 57(4), pages 450-459, April.
    3. Samuel Kotz & Wen Lea Pearn & N. L. Johnson, 1993. "Some Process Capability Indices are More Reliable than One Might Think," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 42(1), pages 55-62, March.
    4. Pearn, W. L. & Wu, Chien-Wei, 2005. "A Bayesian approach for assessing process precision based on multiple samples," European Journal of Operational Research, Elsevier, vol. 165(3), pages 685-695, September.
    5. Wu, Chien-Wei, 2008. "Assessing process capability based on Bayesian approach with subsamples," European Journal of Operational Research, Elsevier, vol. 184(1), pages 207-228, January.
    6. Bernhard Arnold, 1996. "An approach to fuzzy hypothesis testing," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 44(1), pages 119-126, December.
    7. Hong, Dug Hun, 2004. "A note on Cpk index estimation using fuzzy numbers," European Journal of Operational Research, Elsevier, vol. 158(2), pages 529-532, October.
    8. P. Filzmoser & R. Viertl, 2004. "Testing hypotheses with fuzzy data: The fuzzy p-value," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 59(1), pages 21-29, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Iván E. Villalón-Turrubiates & Rogelio López-Herrera & Jorge L. García-Alcaraz & José R. Díaz-Reza & Arturo Soto-Cabral & Iván González-Lazalde & Gerardo Grijalva-Avila & José L. Rodríguez-Álvarez, 2022. "A Non-Invasive Method to Evaluate Fuzzy Process Capability Indices via Coupled Applications of Artificial Neural Networks and the Placket–Burman DOE," Mathematics, MDPI, vol. 10(16), pages 1-27, August.
    2. Gholamreza Hesamian & Mohamad Ghasem Akbari, 2021. "A process capability index for normal random variable with intuitionistic fuzzy information," Operational Research, Springer, vol. 21(2), pages 951-964, June.
    3. Jung-Lin Hung & Cheng-Che Chen & Chun-Mei Lai, 2020. "Possibility Measure of Accepting Statistical Hypothesis," Mathematics, MDPI, vol. 8(4), pages 1-16, April.
    4. Chen, Kuen-Suan & Wang, Ching-Hsin & Tan, Kim-Hua, 2019. "Developing a fuzzy green supplier selection model using six sigma quality indices," International Journal of Production Economics, Elsevier, vol. 212(C), pages 1-7.
    5. Ramli, Azizul Azhar & Watada, Junzo & Pedrycz, Witold, 2011. "Real-time fuzzy regression analysis: A convex hull approach," European Journal of Operational Research, Elsevier, vol. 210(3), pages 606-617, May.
    6. Chen, Kuen-Suan & Wang, Ching-Hsin & Tan, Kim Hua & Chiu, Shun-Fung, 2019. "Developing one-sided specification six-sigma fuzzy quality index and testing model to measure the process performance of fuzzy information," International Journal of Production Economics, Elsevier, vol. 208(C), pages 560-565.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hsu, Bi-Min & Shu, Ming-Hung, 2008. "Fuzzy inference to assess manufacturing process capability with imprecise data," European Journal of Operational Research, Elsevier, vol. 186(2), pages 652-670, April.
    2. Wu, Chien-Wei & Pearn, W.L. & Kotz, Samuel, 2009. "An overview of theory and practice on process capability indices for quality assurance," International Journal of Production Economics, Elsevier, vol. 117(2), pages 338-359, February.
    3. A. Parchami & M. Mashinchi, 2010. "A new generation of process capability indices," Journal of Applied Statistics, Taylor & Francis Journals, vol. 37(1), pages 77-89.
    4. Abbas Parchami & S. Taheri & Mashaallah Mashinchi, 2010. "Fuzzy p-value in testing fuzzy hypotheses with crisp data," Statistical Papers, Springer, vol. 51(1), pages 209-226, January.
    5. Mohammad Ghasem Akbari & Gholamreza Hesamian, 2017. "Record value based on intuitionistic fuzzy random variables," International Journal of Systems Science, Taylor & Francis Journals, vol. 48(15), pages 3305-3315, November.
    6. Abbas Parchami & S. Mahmoud Taheri & Reinhard Viertl & Mashaallah Mashinchi, 2018. "Minimax test for fuzzy hypotheses," Statistical Papers, Springer, vol. 59(4), pages 1623-1648, December.
    7. Shima Yosefi & Mohsen Arefi & Mohammad Ghasem Akbari, 2016. "A new approach for testing fuzzy hypotheses based on likelihood ratio statistic," Statistical Papers, Springer, vol. 57(3), pages 665-688, September.
    8. Wu, Chien-Wei, 2008. "Assessing process capability based on Bayesian approach with subsamples," European Journal of Operational Research, Elsevier, vol. 184(1), pages 207-228, January.
    9. Nataliya Chukhrova & Arne Johannssen, 2020. "Randomized versus non-randomized hypergeometric hypothesis testing with crisp and fuzzy hypotheses," Statistical Papers, Springer, vol. 61(6), pages 2605-2641, December.
    10. Wu, Chien-Wei, 2012. "An efficient inspection scheme for variables based on Taguchi capability index," European Journal of Operational Research, Elsevier, vol. 223(1), pages 116-122.
    11. Muhammad Aslam, 2022. "Neutrosophic F-Test for Two Counts of Data from the Poisson Distribution with Application in Climatology," Stats, MDPI, vol. 5(3), pages 1-11, August.
    12. Hong, Dug Hun, 2004. "A note on Cpk index estimation using fuzzy numbers," European Journal of Operational Research, Elsevier, vol. 158(2), pages 529-532, October.
    13. Fernández, Arturo J. & Pérez-González, Carlos J. & Aslam, Muhammad & Jun, Chi-Hyuck, 2011. "Design of progressively censored group sampling plans for Weibull distributions: An optimization problem," European Journal of Operational Research, Elsevier, vol. 211(3), pages 525-532, June.
    14. Li, Der-Chiang & Lin, Liang-Sian, 2013. "A new approach to assess product lifetime performance for small data sets," European Journal of Operational Research, Elsevier, vol. 230(2), pages 290-298.
    15. Iván E. Villalón-Turrubiates & Rogelio López-Herrera & Jorge L. García-Alcaraz & José R. Díaz-Reza & Arturo Soto-Cabral & Iván González-Lazalde & Gerardo Grijalva-Avila & José L. Rodríguez-Álvarez, 2022. "A Non-Invasive Method to Evaluate Fuzzy Process Capability Indices via Coupled Applications of Artificial Neural Networks and the Placket–Burman DOE," Mathematics, MDPI, vol. 10(16), pages 1-27, August.
    16. Gholamreza Hesamian & Mohamad Ghasem Akbari, 2021. "A process capability index for normal random variable with intuitionistic fuzzy information," Operational Research, Springer, vol. 21(2), pages 951-964, June.
    17. Sajid Ali & Muhammad Riaz, 2014. "On the generalized process capability under simple and mixture models," Journal of Applied Statistics, Taylor & Francis Journals, vol. 41(4), pages 832-852, April.
    18. Pearn, W.L. & Hung, H.N. & Cheng, Ya Ching, 2009. "Supplier selection for one-sided processes with unequal sample sizes," European Journal of Operational Research, Elsevier, vol. 195(2), pages 381-393, June.
    19. Shiau, Jyh-Jen Horng & Hung, Hui-Nien & Chiang, Chun-Ta, 1999. "A note on Bayesian estimation of process capability indices," Statistics & Probability Letters, Elsevier, vol. 45(3), pages 215-224, November.
    20. Hsi-Tien Chen & Kuen-Suan Chen, 2016. "Assessing the assembly quality of a T-bar ceiling suspension by using an advanced multi-process performance analysis chart with asymmetric tolerance," European Journal of Industrial Engineering, Inderscience Enterprises Ltd, vol. 10(2), pages 264-283.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:193:y:2009:i:2:p:499-509. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.