IDEAS home Printed from https://ideas.repec.org/a/spr/orspec/v46y2024i4d10.1007_s00291-024-00746-2.html
   My bibliography  Save this article

Matheuristic fixed set search applied to the multidimensional knapsack problem and the knapsack problem with forfeit sets

Author

Listed:
  • Raka Jovanovic

    (Hamad bin Khalifa University)

  • Stefan Voß

    (University of Hamburg
    Pontificia Universidad Católica de Valparaíso)

Abstract

In this paper, we present a solution method for the multidimensional knapsack problem (MKP) and the knapsack problem with forfeit sets (KPFS) using a population-based matheuristic approach. Specifically, the learning mechanism of the fixed set search (FSS) metaheuristic is combined with the use of integer programming for solving subproblems. This is achieved by introducing a new ground set of elements that can be used for both the MKP and the KPFS that aim to maximize the information provided by the fixed set. The method for creating fixed sets is also adjusted to enhance the diversity of generated solutions. Compared to state-of-the-art methods for the MKP and the KPFS, the proposed approach offers an implementation that can be easily extended to other variants of the knapsack problem. Computational experiments indicate that the matheuristic FSS is highly competitive to best-performing methods from the literature. The proposed approach is robust in the sense of having a good performance for a wide range of parameter values of the method.

Suggested Citation

  • Raka Jovanovic & Stefan Voß, 2024. "Matheuristic fixed set search applied to the multidimensional knapsack problem and the knapsack problem with forfeit sets," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 46(4), pages 1329-1365, December.
  • Handle: RePEc:spr:orspec:v:46:y:2024:i:4:d:10.1007_s00291-024-00746-2
    DOI: 10.1007/s00291-024-00746-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00291-024-00746-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00291-024-00746-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lai, Xiangjing & Hao, Jin-Kao & Yue, Dong, 2019. "Two-stage solution-based tabu search for the multidemand multidimensional knapsack problem," European Journal of Operational Research, Elsevier, vol. 274(1), pages 35-48.
    2. P. C. Gilmore & R. E. Gomory, 1966. "The Theory and Computation of Knapsack Functions," Operations Research, INFORMS, vol. 14(6), pages 1045-1074, December.
    3. Coniglio, Stefano & Furini, Fabio & San Segundo, Pablo, 2021. "A new combinatorial branch-and-bound algorithm for the Knapsack Problem with Conflicts," European Journal of Operational Research, Elsevier, vol. 289(2), pages 435-455.
    4. Woodruff, David L., 1998. "Proposals for chunking and tabu search," European Journal of Operational Research, Elsevier, vol. 106(2-3), pages 585-598, April.
    5. Marco Antonio Boschetti & Vittorio Maniezzo, 2022. "Matheuristics: using mathematics for heuristic design," 4OR, Springer, vol. 20(2), pages 173-208, June.
    6. Raka Jovanovic & Antonio P. Sanfilippo & Stefan Voß, 2022. "Fixed set search applied to the multi-objective minimum weighted vertex cover problem," Journal of Heuristics, Springer, vol. 28(4), pages 481-508, August.
    7. Jiaxin Li & Yan Lan & Feng Chen & Xin Han & Jacek Blazewicz, 2021. "A Fast Algorithm for Knapsack Problem with Conflict Graph," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 38(06), pages 1-34, December.
    8. Yannick Vimont & Sylvain Boussier & Michel Vasquez, 2008. "Reduced costs propagation in an efficient implicit enumeration for the 01 multidimensional knapsack problem," Journal of Combinatorial Optimization, Springer, vol. 15(2), pages 165-178, February.
    9. Chuda Basnet, 2018. "Heuristics for the multiple knapsack problem with conflicts," International Journal of Operational Research, Inderscience Enterprises Ltd, vol. 32(4), pages 514-525.
    10. Renata Mansini & M. Grazia Speranza, 2012. "CORAL: An Exact Algorithm for the Multidimensional Knapsack Problem," INFORMS Journal on Computing, INFORMS, vol. 24(3), pages 399-415, August.
    11. Rosing, K. E. & ReVelle, C. S., 1997. "Heuristic concentration: Two stage solution construction," European Journal of Operational Research, Elsevier, vol. 97(1), pages 75-86, February.
    12. Mancini, Simona & Ciavotta, Michele & Meloni, Carlo, 2021. "The Multiple Multidimensional Knapsack with Family-Split Penalties," European Journal of Operational Research, Elsevier, vol. 289(3), pages 987-998.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jovanovic, Raka & Sanfilippo, Antonio P. & Voß, Stefan, 2023. "Fixed set search applied to the clique partitioning problem," European Journal of Operational Research, Elsevier, vol. 309(1), pages 65-81.
    2. Setzer, Thomas & Blanc, Sebastian M., 2020. "Empirical orthogonal constraint generation for Multidimensional 0/1 Knapsack Problems," European Journal of Operational Research, Elsevier, vol. 282(1), pages 58-70.
    3. Mancini, Simona & Triki, Chefi & Piya, Sujan, 2022. "Optimal selection of touristic packages based on user preferences during sports mega-events," European Journal of Operational Research, Elsevier, vol. 302(3), pages 819-830.
    4. Lai, Xiangjing & Hao, Jin-Kao & Yue, Dong, 2019. "Two-stage solution-based tabu search for the multidemand multidimensional knapsack problem," European Journal of Operational Research, Elsevier, vol. 274(1), pages 35-48.
    5. José García & Paola Moraga & Matias Valenzuela & Hernan Pinto, 2020. "A db-Scan Hybrid Algorithm: An Application to the Multidimensional Knapsack Problem," Mathematics, MDPI, vol. 8(4), pages 1-22, April.
    6. Al-Shihabi, Sameh, 2021. "A Novel Core-Based Optimization Framework for Binary Integer Programs- the Multidemand Multidimesional Knapsack Problem as a Test Problem," Operations Research Perspectives, Elsevier, vol. 8(C).
    7. Wei, Zequn & Hao, Jin-Kao & Ren, Jintong & Glover, Fred, 2023. "Responsive strategic oscillation for solving the disjunctively constrained knapsack problem," European Journal of Operational Research, Elsevier, vol. 309(3), pages 993-1009.
    8. Lamanna, Leonardo & Mansini, Renata & Zanotti, Roberto, 2022. "A two-phase kernel search variant for the multidimensional multiple-choice knapsack problem," European Journal of Operational Research, Elsevier, vol. 297(1), pages 53-65.
    9. Mancini, Simona & Gansterer, Margaretha, 2021. "Vehicle scheduling for rental-with-driver services," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 156(C).
    10. S Salhi & A Al-Khedhairi, 2010. "Integrating heuristic information into exact methods: The case of the vertex p-centre problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 61(11), pages 1619-1631, November.
    11. Russo, Mauro & Sforza, Antonio & Sterle, Claudio, 2013. "An improvement of the knapsack function based algorithm of Gilmore and Gomory for the unconstrained two-dimensional guillotine cutting problem," International Journal of Production Economics, Elsevier, vol. 145(2), pages 451-462.
    12. Hanafi, Said & Freville, Arnaud, 1998. "An efficient tabu search approach for the 0-1 multidimensional knapsack problem," European Journal of Operational Research, Elsevier, vol. 106(2-3), pages 659-675, April.
    13. Parada Daza, Victor & Gomes de Alvarenga, Arlindo & de Diego, Jose, 1995. "Exact solutions for constrained two-dimensional cutting problems," European Journal of Operational Research, Elsevier, vol. 84(3), pages 633-644, August.
    14. Suliman, S.M.A., 2006. "A sequential heuristic procedure for the two-dimensional cutting-stock problem," International Journal of Production Economics, Elsevier, vol. 99(1-2), pages 177-185, February.
    15. M Hifi & M Michrafy, 2006. "A reactive local search-based algorithm for the disjunctively constrained knapsack problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 57(6), pages 718-726, June.
    16. Jooken, Jorik & Leyman, Pieter & De Causmaecker, Patrick, 2023. "Features for the 0-1 knapsack problem based on inclusionwise maximal solutions," European Journal of Operational Research, Elsevier, vol. 311(1), pages 36-55.
    17. Renata Mansini & M. Grazia Speranza, 2012. "CORAL: An Exact Algorithm for the Multidimensional Knapsack Problem," INFORMS Journal on Computing, INFORMS, vol. 24(3), pages 399-415, August.
    18. Hifi, Mhand & M'Hallah, Rym, 2006. "Strip generation algorithms for constrained two-dimensional two-staged cutting problems," European Journal of Operational Research, Elsevier, vol. 172(2), pages 515-527, July.
    19. Sbihi, Abdelkader, 2010. "A cooperative local search-based algorithm for the Multiple-Scenario Max-Min Knapsack Problem," European Journal of Operational Research, Elsevier, vol. 202(2), pages 339-346, April.
    20. Silva, Elsa & Oliveira, José Fernando & Silveira, Tiago & Mundim, Leandro & Carravilla, Maria Antónia, 2023. "The Floating-Cuts model: a general and flexible mixed-integer programming model for non-guillotine and guillotine rectangular cutting problems," Omega, Elsevier, vol. 114(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:orspec:v:46:y:2024:i:4:d:10.1007_s00291-024-00746-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.