Renewal Redundant Systems Under the Marshall–Olkin Failure Model. A Probability Analysis
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Li, Xiaohu & Pellerey, Franco, 2011. "Generalized Marshall-Olkin distributions and related bivariate aging properties," Journal of Multivariate Analysis, Elsevier, vol. 102(10), pages 1399-1409, November.
- Omey, E. & Willekens, E., 1989. "Abelian and Tauberian theorems for the Laplace transform of functions in several variables," Journal of Multivariate Analysis, Elsevier, vol. 30(2), pages 292-306, August.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Pellerey, Franco & Shaked, Moshe & Yasaei Sekeh, Salimeh, 2012. "Comparisons of concordance in additive models," Statistics & Probability Letters, Elsevier, vol. 82(11), pages 2059-2067.
- Jianhua Lin & Xiaohu Li, 2014. "Multivariate Generalized Marshall–Olkin Distributions and Copulas," Methodology and Computing in Applied Probability, Springer, vol. 16(1), pages 53-78, March.
- Hyunju Lee & Ji Hwan Cha, 2021. "A general multivariate new better than used (MNBU) distribution and its properties," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 84(1), pages 27-46, January.
- Umberto Cherubini & Sabrina Mulinacci, 2021. "Hierarchical Archimedean Dependence in Common Shock Models," Methodology and Computing in Applied Probability, Springer, vol. 23(1), pages 143-163, March.
- Hugo Brango & Angie Guerrero & Humberto Llinás, 2024. "Marshall–Olkin Bivariate Weibull Model with Modified Singularity (MOBW- μ ): A Study of Its Properties and Correlation Structure," Mathematics, MDPI, vol. 12(14), pages 1-16, July.
- Matthias Scherer & Henrik Sloot, 2019. "Exogenous shock models: analytical characterization and probabilistic construction," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 82(8), pages 931-959, November.
- Sabrina Mulinacci, 2022. "A Marshall-Olkin Type Multivariate Model with Underlying Dependent Shocks," Methodology and Computing in Applied Probability, Springer, vol. 24(4), pages 2455-2484, December.
- Gwo Dong Lin & Xiaoling Dou & Satoshi Kuriki, 2019. "The Bivariate Lack-of-Memory Distributions," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 81(2), pages 273-297, December.
- Li, Yang & Sun, Jianguo & Song, Shuguang, 2012. "Statistical analysis of bivariate failure time data with Marshall–Olkin Weibull models," Computational Statistics & Data Analysis, Elsevier, vol. 56(6), pages 2041-2050.
- Sabrina Mulinacci, 2018. "Archimedean-based Marshall-Olkin Distributions and Related Dependence Structures," Methodology and Computing in Applied Probability, Springer, vol. 20(1), pages 205-236, March.
- Sloot Henrik, 2020. "The deFinetti representation of generalised Marshall–Olkin sequences," Dependence Modeling, De Gruyter, vol. 8(1), pages 107-118, January.
- Yang Lu, 2020. "The distribution of unobserved heterogeneity in competing risks models," Statistical Papers, Springer, vol. 61(2), pages 681-696, April.
- Somayeh Ashrafi & Majid Asadi & Razieh Rostami, 2024. "On preventive maintenance of k-out-of-n systems subject to fatal shocks," Journal of Risk and Reliability, , vol. 238(2), pages 291-303, April.
- Sabrina Mulinacci, 2017. "A systemic shock model for too big to fail financial institutions," Papers 1704.02160, arXiv.org, revised Apr 2017.
- Mercier, Sophie & Pham, Hai Ha, 2017. "A bivariate failure time model with random shocks and mixed effects," Journal of Multivariate Analysis, Elsevier, vol. 153(C), pages 33-51.
- Pinto, Jayme & Kolev, Nikolai, 2015. "Sibuya-type bivariate lack of memory property," Journal of Multivariate Analysis, Elsevier, vol. 134(C), pages 119-128.
- Yinping You & Xiaohu Li & Narayanaswamy Balakrishnan, 2014. "On extremes of bivariate residual lifetimes from generalized Marshall–Olkin and time transformed exponential models," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 77(8), pages 1041-1056, November.
- Mallor, F. & Omey, E. & Santos, J., 2007. "Multivariate weighted renewal functions," Journal of Multivariate Analysis, Elsevier, vol. 98(1), pages 30-39, January.
- Gobbi, Fabio & Kolev, Nikolai & Mulinacci, Sabrina, 2021. "Ryu-type extended Marshall-Olkin model with implicit shocks and joint life insurance applications," Insurance: Mathematics and Economics, Elsevier, vol. 101(PB), pages 342-358.
- Sloot Henrik, 2020. "The deFinetti representation of generalised Marshall–Olkin sequences," Dependence Modeling, De Gruyter, vol. 8(1), pages 107-118, January.
More about this item
Keywords
LST and PGF probability interpretation; Marshall–Olkin reliability model; reliability analysis; stationary probabilities; system with component-dependent failures;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:8:y:2020:i:3:p:459-:d:336586. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.