IDEAS home Printed from https://ideas.repec.org/a/spr/metcap/v17y2015i1d10.1007_s11009-013-9336-9.html
   My bibliography  Save this article

Stochastic Viability and Comparison Theorems for Mixed Stochastic Differential Equations

Author

Listed:
  • Alexander Melnikov

    (University of Alberta)

  • Yuliya Mishura

    (Kyiv National Taras Shevchenko University)

  • Georgiy Shevchenko

    (Kyiv National Taras Shevchenko University)

Abstract

For a mixed stochastic differential equation containing both Wiener process and a Hölder continuous process with exponent γ > 1/2, we prove a stochastic viability theorem. As a consequence, we get a result about positivity of solution and a pathwise comparison theorem. An application to option price estimation is given.

Suggested Citation

  • Alexander Melnikov & Yuliya Mishura & Georgiy Shevchenko, 2015. "Stochastic Viability and Comparison Theorems for Mixed Stochastic Differential Equations," Methodology and Computing in Applied Probability, Springer, vol. 17(1), pages 169-188, March.
  • Handle: RePEc:spr:metcap:v:17:y:2015:i:1:d:10.1007_s11009-013-9336-9
    DOI: 10.1007/s11009-013-9336-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11009-013-9336-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11009-013-9336-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hu, Yaozhong & Nualart, David & Song, Xiaoming, 2008. "A singular stochastic differential equation driven by fractional Brownian motion," Statistics & Probability Letters, Elsevier, vol. 78(14), pages 2075-2085, October.
    2. John C. Cox & Jonathan E. Ingersoll Jr. & Stephen A. Ross, 2005. "A Theory Of The Term Structure Of Interest Rates," World Scientific Book Chapters, in: Sudipto Bhattacharya & George M Constantinides (ed.), Theory Of Valuation, chapter 5, pages 129-164, World Scientific Publishing Co. Pte. Ltd..
    3. Kubilius, K., 2002. "The existence and uniqueness of the solution of an integral equation driven by a p-semimartingale of special type," Stochastic Processes and their Applications, Elsevier, vol. 98(2), pages 289-315, April.
    4. Christian Bender & Tommi Sottinen & Esko Valkeila, 2010. "Fractional processes as models in stochastic finance," Papers 1004.3106, arXiv.org.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Hui, 2019. "Research on application of fractional calculus in signal real-time analysis and processing in stock financial market," Chaos, Solitons & Fractals, Elsevier, vol. 128(C), pages 92-97.
    2. Coutin, Laure & Marie, Nicolas, 2017. "Invariance for rough differential equations," Stochastic Processes and their Applications, Elsevier, vol. 127(7), pages 2373-2395.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Falkowski, Adrian & Słomiński, Leszek, 2017. "SDEs with constraints driven by semimartingales and processes with bounded p-variation," Stochastic Processes and their Applications, Elsevier, vol. 127(11), pages 3536-3557.
    2. Marc Mukendi Mpanda & Safari Mukeru & Mmboniseni Mulaudzi, 2020. "Generalisation of Fractional-Cox-Ingersoll-Ross Process," Papers 2008.07798, arXiv.org, revised Jul 2022.
    3. Hong, Jialin & Huang, Chuying & Kamrani, Minoo & Wang, Xu, 2020. "Optimal strong convergence rate of a backward Euler type scheme for the Cox–Ingersoll–Ross model driven by fractional Brownian motion," Stochastic Processes and their Applications, Elsevier, vol. 130(5), pages 2675-2692.
    4. Falkowski, Adrian & Słomiński, Leszek, 2022. "SDEs with two reflecting barriers driven by semimartingales and processes with bounded p-variation," Stochastic Processes and their Applications, Elsevier, vol. 146(C), pages 164-186.
    5. Alexander Alvarez & Sebastian E. Ferrando, 2016. "Trajectory-Based Models, Arbitrage And Continuity," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 19(03), pages 1-34, May.
    6. Mishura, Yuliya & Shalaiko, Taras & Shevchenko, Georgiy, 2015. "Convergence of solutions of mixed stochastic delay differential equations with applications," Applied Mathematics and Computation, Elsevier, vol. 257(C), pages 487-497.
    7. Kau, James B. & Keenan, Donald C., 1999. "Patterns of rational default," Regional Science and Urban Economics, Elsevier, vol. 29(6), pages 765-785, November.
    8. Camilla LandÊn, 2000. "Bond pricing in a hidden Markov model of the short rate," Finance and Stochastics, Springer, vol. 4(4), pages 371-389.
    9. Thomas Kokholm & Martin Stisen, 2015. "Joint pricing of VIX and SPX options with stochastic volatility and jump models," Journal of Risk Finance, Emerald Group Publishing Limited, vol. 16(1), pages 27-48, January.
    10. Álvarez Echeverría Francisco & López Sarabia Pablo & Venegas Martínez Francisco, 2012. "Valuación financiera de proyectos de inversión en nuevas tecnologías con opciones reales," Contaduría y Administración, Accounting and Management, vol. 57(3), pages 115-145, julio-sep.
    11. Hisashi Nakamura & Wataru Nozawa & Akihiko Takahashi, 2009. "Macroeconomic Implications of Term Structures of Interest Rates Under Stochastic Differential Utility with Non-Unitary EIS," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 16(3), pages 231-263, September.
    12. Darren Shannon & Grigorios Fountas, 2021. "Extending the Heston Model to Forecast Motor Vehicle Collision Rates," Papers 2104.11461, arXiv.org, revised May 2021.
    13. Matsumura, Marco & Moreira, Ajax & Vicente, José, 2011. "Forecasting the yield curve with linear factor models," International Review of Financial Analysis, Elsevier, vol. 20(5), pages 237-243.
    14. Ivanova, Vesela & Puigvert Gutiérrez, Josep Maria, 2014. "Interest rate forecasts, state price densities and risk premium from Euribor options," Journal of Banking & Finance, Elsevier, vol. 48(C), pages 210-223.
    15. Lin, Bing-Huei, 1999. "Fitting the term structure of interest rates for Taiwanese government bonds," Journal of Multinational Financial Management, Elsevier, vol. 9(3-4), pages 331-352, November.
    16. Gollier, Christian, 2002. "Time Horizon and the Discount Rate," Journal of Economic Theory, Elsevier, vol. 107(2), pages 463-473, December.
    17. Henry, Olan T. & Olekalns, Nilss & Suardi, Sandy, 2007. "Testing for rate dependence and asymmetry in inflation uncertainty: Evidence from the G7 economies," Economics Letters, Elsevier, vol. 94(3), pages 383-388, March.
    18. Robert R. Bliss & Ehud I. Ronn, 1997. "Callable U.S. Treasury bonds: optimal calls, anomalies, and implied volatilities," FRB Atlanta Working Paper 97-1, Federal Reserve Bank of Atlanta.
    19. Ammann, Manuel & Kind, Axel & Wilde, Christian, 2003. "Are convertible bonds underpriced? An analysis of the French market," Journal of Banking & Finance, Elsevier, vol. 27(4), pages 635-653, April.
    20. Lihong Guo, 2024. "Renormalization Group Method for a Stochastic Differential Equation with Multiplicative Fractional White Noise," Mathematics, MDPI, vol. 12(3), pages 1-20, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:metcap:v:17:y:2015:i:1:d:10.1007_s11009-013-9336-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.