IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v8y2020i12p2211-d461499.html
   My bibliography  Save this article

Analytical Methods for Nonlinear Evolution Equations in Mathematical Physics

Author

Listed:
  • Khaled A. Gepreel

    (Mathematics Department, Faculty of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
    Mathematics Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt)

Abstract

In this article, we will apply some of the algebraic methods to find great moving solutions to some nonlinear physical and engineering questions, such as a nonlinear (1 + 1) Ito integral differential equation and (1 + 1) nonlinear Schrödinger equation. To analyze practical solutions to these problems, we essentially use the generalized expansion approach. After various W and G options, we get several clear means of estimating the plentiful nonlinear physics solutions. We present a process like-direct expansion process-method of expansion. In the particular case of W ′ = λ G , G ′ = μ W in which λ and μ are arbitrary constants, we use the expansion process to build some new exact solutions for nonlinear equations of growth if it fulfills the decoupled differential equations.

Suggested Citation

  • Khaled A. Gepreel, 2020. "Analytical Methods for Nonlinear Evolution Equations in Mathematical Physics," Mathematics, MDPI, vol. 8(12), pages 1-14, December.
  • Handle: RePEc:gam:jmathe:v:8:y:2020:i:12:p:2211-:d:461499
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/8/12/2211/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/8/12/2211/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chen, Yong & Wang, Qi, 2005. "Extended Jacobi elliptic function rational expansion method and abundant families of Jacobi elliptic function solutions to (1+1)-dimensional dispersive long wave equation," Chaos, Solitons & Fractals, Elsevier, vol. 24(3), pages 745-757.
    2. He, Ji-Huan & Wu, Xu-Hong, 2006. "Exp-function method for nonlinear wave equations," Chaos, Solitons & Fractals, Elsevier, vol. 30(3), pages 700-708.
    3. Omar Bazighifan & Hijaz Ahmad & Shao-Wen Yao, 2020. "New Oscillation Criteria for Advanced Differential Equations of Fourth Order," Mathematics, MDPI, vol. 8(5), pages 1-10, May.
    4. Ma, Wen-Xiu & Lee, Jyh-Hao, 2009. "A transformed rational function method and exact solutions to the 3+1 dimensional Jimbo–Miwa equation," Chaos, Solitons & Fractals, Elsevier, vol. 42(3), pages 1356-1363.
    5. Bazighifan, Omar, 2020. "On the oscillation of certain fourth-order differential equations with p-Laplacian like operator," Applied Mathematics and Computation, Elsevier, vol. 386(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. M. Ali Akbar & Md. Nur Alam & Md. Golam Hafez, 2016. "Application of the novel (G′/G)-expansion method to construct traveling wave solutions to the positive Gardner-KP equation," Indian Journal of Pure and Applied Mathematics, Springer, vol. 47(1), pages 85-96, March.
    2. Bo Xu & Sheng Zhang, 2022. "Analytical Method for Generalized Nonlinear Schrödinger Equation with Time-Varying Coefficients: Lax Representation, Riemann-Hilbert Problem Solutions," Mathematics, MDPI, vol. 10(7), pages 1-15, March.
    3. Kumar, Sachin & Kumar, Dharmendra & Kumar, Amit, 2021. "Lie symmetry analysis for obtaining the abundant exact solutions, optimal system and dynamics of solitons for a higher-dimensional Fokas equation," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    4. Devi, Munesh & Yadav, Shalini & Arora, Rajan, 2021. "Optimal system, invariance analysis of fourth-Order nonlinear ablowitz-Kaup-Newell-Segur water wave dynamical equation using lie symmetry approach," Applied Mathematics and Computation, Elsevier, vol. 404(C).
    5. Nur Alam & Fethi Bin Muhammad Belgacem, 2016. "Microtubules Nonlinear Models Dynamics Investigations through the exp(??(?))-Expansion Method Implementation," Mathematics, MDPI, vol. 4(1), pages 1-13, February.
    6. He, Ji-Huan, 2009. "Nonlinear science as a fluctuating research frontier," Chaos, Solitons & Fractals, Elsevier, vol. 41(5), pages 2533-2537.
    7. Sheng Zhang & Jiao Gao & Bo Xu, 2022. "An Integrable Evolution System and Its Analytical Solutions with the Help of Mixed Spectral AKNS Matrix Problem," Mathematics, MDPI, vol. 10(21), pages 1-16, October.
    8. Suheel Abdullah Malik & Ijaz Mansoor Qureshi & Muhammad Amir & Aqdas Naveed Malik & Ihsanul Haq, 2015. "Numerical Solution to Generalized Burgers'-Fisher Equation Using Exp-Function Method Hybridized with Heuristic Computation," PLOS ONE, Public Library of Science, vol. 10(3), pages 1-15, March.
    9. Nguyen, Lu Trong Khiem, 2015. "Modified homogeneous balance method: Applications and new solutions," Chaos, Solitons & Fractals, Elsevier, vol. 73(C), pages 148-155.
    10. Hussain, Akhtar & Ibrahim, Tarek F. & Birkea, Fathea M.O. & Al-Sinan, B.R. & Alotaibi, Abeer M., 2024. "Abundant analytical solutions and diverse solitonic patterns for the complex Ginzburg–Landau equation," Chaos, Solitons & Fractals, Elsevier, vol. 185(C).
    11. Jing Chang & Jin Zhang & Ming Cai, 2021. "Series Solutions of High-Dimensional Fractional Differential Equations," Mathematics, MDPI, vol. 9(17), pages 1-21, August.
    12. Bekir, Ahmet & Cevikel, Adem C., 2009. "New exact travelling wave solutions of nonlinear physical models," Chaos, Solitons & Fractals, Elsevier, vol. 41(4), pages 1733-1739.
    13. Zhou, Jiangrui & Zhou, Rui & Zhu, Shihui, 2020. "Peakon, rational function and periodic solutions for Tzitzeica–Dodd–Bullough type equations," Chaos, Solitons & Fractals, Elsevier, vol. 141(C).
    14. Golbabai, A. & Javidi, M., 2009. "A spectral domain decomposition approach for the generalized Burger’s–Fisher equation," Chaos, Solitons & Fractals, Elsevier, vol. 39(1), pages 385-392.
    15. Sheng Zhang & Yuanyuan Wei & Bo Xu, 2019. "Fractional Soliton Dynamics and Spectral Transform of Time-Fractional Nonlinear Systems: A Concrete Example," Complexity, Hindawi, vol. 2019, pages 1-9, August.
    16. Hassan Kamil Jassim & Mohammed Abdulshareef Hussein, 2023. "A New Approach for Solving Nonlinear Fractional Ordinary Differential Equations," Mathematics, MDPI, vol. 11(7), pages 1-13, March.
    17. Kumar, Sachin & Kumar, Amit, 2022. "Dynamical behaviors and abundant optical soliton solutions of the cold bosonic atoms in a zig-zag optical lattice model using two integral schemes," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 201(C), pages 254-274.
    18. Akinyemi, Lanre & Şenol, Mehmet & Iyiola, Olaniyi S., 2021. "Exact solutions of the generalized multidimensional mathematical physics models via sub-equation method," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 182(C), pages 211-233.
    19. Bekir, Ahmet & Boz, Ahmet, 2009. "Application of Exp-function method for (2+1)-dimensional nonlinear evolution equations," Chaos, Solitons & Fractals, Elsevier, vol. 40(1), pages 458-465.
    20. Abourabia, A.M. & Morad, A.M., 2015. "Exact traveling wave solutions of the van der Waals normal form for fluidized granular matter," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 437(C), pages 333-350.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:8:y:2020:i:12:p:2211-:d:461499. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.