IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v8y2020i11p2060-d447268.html
   My bibliography  Save this article

The Inverse-Power Logistic-Exponential Distribution: Properties, Estimation Methods, and Application to Insurance Data

Author

Listed:
  • Mashail M. AL Sobhi

    (Department of Mathematics, Umm-Al-Qura University, Makkah 24227, Saudi Arabia)

Abstract

The present paper proposes a new distribution called the inverse power logistic exponential distribution that extends the inverse Weibull, inverse logistic exponential, inverse Rayleigh, and inverse exponential distributions. The proposed model accommodates symmetrical, right-skewed, left-skewed, reversed-J-shaped, and J-shaped densities and increasing, unimodal, decreasing, reversed-J-shaped, and J-shaped hazard rates. We derive some mathematical properties of the proposed model. The model parameters were estimated using five estimation methods including the maximum likelihood, Anderson–Darling, least-squares, Cramér–von Mises, and weighted least-squares estimation methods. The performance of these estimation methods was assessed by a detailed simulation study. Furthermore, the flexibility of the introduced model was studied using an insurance real dataset, showing that the proposed model can be used to fit the insurance data as compared with twelve competing models.

Suggested Citation

  • Mashail M. AL Sobhi, 2020. "The Inverse-Power Logistic-Exponential Distribution: Properties, Estimation Methods, and Application to Insurance Data," Mathematics, MDPI, vol. 8(11), pages 1-15, November.
  • Handle: RePEc:gam:jmathe:v:8:y:2020:i:11:p:2060-:d:447268
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/8/11/2060/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/8/11/2060/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Abbas Mahdavi & Debasis Kundu, 2017. "A new method for generating distributions with an application to exponential distribution," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 46(13), pages 6543-6557, July.
    2. M. Mansoor & M. H. Tahir & Gauss M. Cordeiro & Serge B. Provost & Ayman Alzaatreh, 2019. "The Marshall-Olkin logistic-exponential distribution," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 48(2), pages 220-234, January.
    3. Luis Gustavo Bastos Pinho & Gauss Moutinho Cordeiro & Juvêncio Santos Nobre, 2015. "The Harris Extended Exponential Distribution," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 44(16), pages 3486-3502, August.
    4. M. E. Mead, 2015. "Generalized Inverse Gamma Distribution and its Application in Reliability," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 44(7), pages 1426-1435, April.
    5. Yingjie Lan & Lawrence M. Leemis, 2008. "The logistic–exponential survival distribution," Naval Research Logistics (NRL), John Wiley & Sons, vol. 55(3), pages 252-264, April.
    6. Morad Alizadeh & Ahmed Z. Afify & M. S. Eliwa & Sajid Ali, 2020. "The odd log-logistic Lindley-G family of distributions: properties, Bayesian and non-Bayesian estimation with applications," Computational Statistics, Springer, vol. 35(1), pages 281-308, March.
    7. Ahmed Z. Afify & Ahmed M. Gemeay & Noor Akma Ibrahim, 2020. "The Heavy-Tailed Exponential Distribution: Risk Measures, Estimation, and Application to Actuarial Data," Mathematics, MDPI, vol. 8(8), pages 1-28, August.
    8. Nadarajah, Saralees & Kotz, Samuel, 2006. "The beta exponential distribution," Reliability Engineering and System Safety, Elsevier, vol. 91(6), pages 689-697.
    9. M. Jones, 2004. "Families of distributions arising from distributions of order statistics," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 13(1), pages 1-43, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Maha A. D. Aldahlan & Ahmed Z. Afify, 2020. "The Odd Exponentiated Half-Logistic Exponential Distribution: Estimation Methods and Application to Engineering Data," Mathematics, MDPI, vol. 8(10), pages 1-26, October.
    2. Ahmed Z. Afify & Osama Abdo Mohamed, 2020. "A New Three-Parameter Exponential Distribution with Variable Shapes for the Hazard Rate: Estimation and Applications," Mathematics, MDPI, vol. 8(1), pages 1-17, January.
    3. Ahmed Z. Afify & Ahmed M. Gemeay & Noor Akma Ibrahim, 2020. "The Heavy-Tailed Exponential Distribution: Risk Measures, Estimation, and Application to Actuarial Data," Mathematics, MDPI, vol. 8(8), pages 1-28, August.
    4. A. A. Ogunde & S. T. Fayose & B. Ajayi & D. O. Omosigho, 2020. "Properties, Inference and Applications of Alpha Power Extended Inverted Weibull Distribution," International Journal of Statistics and Probability, Canadian Center of Science and Education, vol. 9(6), pages 1-90, November.
    5. Abdus Saboor & Muhammad Nauman Khan & Gauss M. Cordeiro & Marcelino A. R. Pascoa & Juliano Bortolini & Shahid Mubeen, 2019. "Modified beta modified-Weibull distribution," Computational Statistics, Springer, vol. 34(1), pages 173-199, March.
    6. Alexander, Carol & Cordeiro, Gauss M. & Ortega, Edwin M.M. & Sarabia, José María, 2012. "Generalized beta-generated distributions," Computational Statistics & Data Analysis, Elsevier, vol. 56(6), pages 1880-1897.
    7. Abdisalam Hassan Muse & Samuel M. Mwalili & Oscar Ngesa, 2021. "On the Log-Logistic Distribution and Its Generalizations: A Survey," International Journal of Statistics and Probability, Canadian Center of Science and Education, vol. 10(3), pages 1-93, June.
    8. Hassan S. Bakouch & Abdus Saboor & Muhammad Nauman Khan, 2021. "Modified Beta Linear Exponential Distribution with Hydrologic Applications," Annals of Data Science, Springer, vol. 8(1), pages 131-157, March.
    9. Abdulhakim A. Al-Babtain & Mohammed K. Shakhatreh & Mazen Nassar & Ahmed Z. Afify, 2020. "A New Modified Kies Family: Properties, Estimation Under Complete and Type-II Censored Samples, and Engineering Applications," Mathematics, MDPI, vol. 8(8), pages 1-24, August.
    10. Emrah Altun & Mustafa Ç. Korkmaz & Mahmoud El-Morshedy & Mohamed S. Eliwa, 2021. "A New Flexible Family of Continuous Distributions: The Additive Odd-G Family," Mathematics, MDPI, vol. 9(16), pages 1-17, August.
    11. Lemonte, Artur J., 2013. "A new exponential-type distribution with constant, decreasing, increasing, upside-down bathtub and bathtub-shaped failure rate function," Computational Statistics & Data Analysis, Elsevier, vol. 62(C), pages 149-170.
    12. Cordeiro, Gauss M. & Lemonte, Artur J., 2011. "The beta Laplace distribution," Statistics & Probability Letters, Elsevier, vol. 81(8), pages 973-982, August.
    13. Psarrakos, Georgios & Toomaj, Abdolsaeed & Vliora, Polyxeni, 2024. "A family of variability measures based on the cumulative residual entropy and distortion functions," Insurance: Mathematics and Economics, Elsevier, vol. 114(C), pages 212-222.
    14. Alzaatreh, Ayman & Famoye, Felix & Lee, Carl, 2014. "The gamma-normal distribution: Properties and applications," Computational Statistics & Data Analysis, Elsevier, vol. 69(C), pages 67-80.
    15. Mohamed Hussein & Gauss M. Cordeiro, 2022. "A Modified Power Family of Distributions: Properties, Simulations and Applications," Mathematics, MDPI, vol. 10(7), pages 1-16, March.
    16. Ibrahim Elbatal & Francesca Condino & Filippo Domma, 2016. "Reflected Generalized Beta Inverse Weibull Distribution: definition and properties," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 78(2), pages 316-340, November.
    17. Sanku Dey & Mahendra Saha & M. Z. Anis & Sudhansu S. Maiti & Sumit Kumar, 2023. "Estimation and confidence intervals of $$C_{Np}(u,v)$$ C Np ( u , v ) for logistic-exponential distribution with application," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 14(1), pages 431-446, March.
    18. Jemilohun Vincent Gbenga & Ipinyomi Reuben Adeyemi, 2022. "Alpha Power Extended Inverse Weibull Poisson Distribution: Properties, Inference, and Applications to lifetime data," International Journal of Statistics and Probability, Canadian Center of Science and Education, vol. 11(1), pages 1-10, March.
    19. Mahmoud Aldeni & Carl Lee & Felix Famoye, 2017. "Families of distributions arising from the quantile of generalized lambda distribution," Journal of Statistical Distributions and Applications, Springer, vol. 4(1), pages 1-18, December.
    20. Carol Alexander & José María Sarabia, 2012. "Quantile Uncertainty and Value‐at‐Risk Model Risk," Risk Analysis, John Wiley & Sons, vol. 32(8), pages 1293-1308, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:8:y:2020:i:11:p:2060-:d:447268. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.