IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v9y2021i21p2836-d674697.html
   My bibliography  Save this article

Study of a Modified Kumaraswamy Distribution

Author

Listed:
  • Rashad A. R. Bantan

    (Department of Marine Geology, Faculty of Marine Science, King Abdulaziz University, Jeddah 21551, Saudi Arabia)

  • Christophe Chesneau

    (Department of Mathematics, Campus II, Université de Caen Normandie, Science 3, 14032 Caen, France)

  • Farrukh Jamal

    (Department of Statistics, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan)

  • Mohammed Elgarhy

    (The Higher Institute of Commercial Sciences, Al Mahalla Al Kubra, Al Gharbia 31951, Egypt)

  • Waleed Almutiry

    (Department of Mathematics, College of Science and Arts in Ar Rass, Qassim University, Buryadah 52571, Saudi Arabia)

  • Amani Abdullah Alahmadi

    (College of Science and Humanities, Shaqra University, Shaqra 15572, Saudi Arabia)

Abstract

In this article, a structural modification of the Kumaraswamy distribution yields a new two-parameter distribution defined on ( 0 , 1 ) , called the modified Kumaraswamy distribution. It has the advantages of being (i) original in its definition, mixing logarithmic, power and ratio functions, (ii) flexible from the modeling viewpoint, with rare functional capabilities for a bounded distribution—in particular, N-shapes are observed for both the probability density and hazard rate functions—and (iii) a solid alternative to its parental Kumaraswamy distribution in the first-order stochastic sense. Some statistical features, such as the moments and quantile function, are represented in closed form. The Lambert function and incomplete beta function are involved in this regard. The distributions of order statistics are also explored. Then, emphasis is put on the practice of the modified Kumaraswamy model in the context of data fitting. The well-known maximum likelihood approach is used to estimate the parameters, and a simulation study is conducted to examine the performance of this approach. In order to demonstrate the applicability of the suggested model, two real data sets are considered. As a notable result, for the considered data sets, statistical benchmarks indicate that the new modeling strategy outperforms the Kumaraswamy model. The transmuted Kumaraswamy, beta, unit Rayleigh, Topp–Leone and power models are also outperformed.

Suggested Citation

  • Rashad A. R. Bantan & Christophe Chesneau & Farrukh Jamal & Mohammed Elgarhy & Waleed Almutiry & Amani Abdullah Alahmadi, 2021. "Study of a Modified Kumaraswamy Distribution," Mathematics, MDPI, vol. 9(21), pages 1-26, November.
  • Handle: RePEc:gam:jmathe:v:9:y:2021:i:21:p:2836-:d:674697
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/9/21/2836/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/9/21/2836/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Robert King & Irene Lena Hudson & Muhammad Shuaib Khan, 2016. "Transmuted Kumaraswamy Distribution," Statistics in Transition new series, Główny Urząd Statystyczny (Polska), vol. 17(2), pages 183-210, June.
    2. Khan Muhammad Shuaib & King Robert & Hudson Irene Lena, 2016. "Transmuted Kumaraswamy Distribution," Statistics in Transition New Series, Statistics Poland, vol. 17(2), pages 183-210, June.
    3. Silvia Ferrari & Francisco Cribari-Neto, 2004. "Beta Regression for Modelling Rates and Proportions," Journal of Applied Statistics, Taylor & Francis Journals, vol. 31(7), pages 799-815.
    4. Josmar Mazucheli & André Felipe Menezes & Sanku Dey, 2019. "Unit-Gompertz Distribution with Applications," Statistica, Department of Statistics, University of Bologna, vol. 79(1), pages 25-43.
    5. Muhammad Shuaib Khan & Robert King & Irene Lena Hudson, 2016. "Transmuted Kumaraswamy Distribution," Statistics in Transition New Series, Polish Statistical Association, vol. 17(2), pages 183-210, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Weizhong Tian & Liyuan Pang & Chengliang Tian & Wei Ning, 2023. "Change Point Analysis for Kumaraswamy Distribution," Mathematics, MDPI, vol. 11(3), pages 1-22, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Odom Conleth Chinazom & Nduka Ethelbert Chinaka & Ijomah Maxwell Azubuike, 2019. "The Marshall-Olkin Extended Weibull-Exponential Distribution: Properties and Applications," Journal of Asian Scientific Research, Asian Economic and Social Society, vol. 9(10), pages 158-172, October.
    2. Rashad A. R. Bantan & Christophe Chesneau & Farrukh Jamal & Mohammed Elgarhy & Muhammad H. Tahir & Aqib Ali & Muhammad Zubair & Sania Anam, 2020. "Some New Facts about the Unit-Rayleigh Distribution with Applications," Mathematics, MDPI, vol. 8(11), pages 1-23, November.
    3. Mustafa Ç. Korkmaz & Emrah Altun & Morad Alizadeh & M. El-Morshedy, 2021. "The Log Exponential-Power Distribution: Properties, Estimations and Quantile Regression Model," Mathematics, MDPI, vol. 9(21), pages 1-19, October.
    4. Sher B. Chhetri & Alfred A. Akinsete & Gokarna Aryal & Hongwei Long, 2017. "The Kumaraswamy transmuted Pareto distribution," Journal of Statistical Distributions and Applications, Springer, vol. 4(1), pages 1-24, December.
    5. Anum Shafiq & Tabassum Naz Sindhu & Sanku Dey & Showkat Ahmad Lone & Tahani A. Abushal, 2023. "Statistical Features and Estimation Methods for Half-Logistic Unit-Gompertz Type-I Model," Mathematics, MDPI, vol. 11(4), pages 1-24, February.
    6. Devendra Kumar & Manoj Kumar, 2019. "A New Generalization of the Extended Exponential Distribution with an Application," Annals of Data Science, Springer, vol. 6(3), pages 441-462, September.
    7. Weizhong Tian & Liyuan Pang & Chengliang Tian & Wei Ning, 2023. "Change Point Analysis for Kumaraswamy Distribution," Mathematics, MDPI, vol. 11(3), pages 1-22, January.
    8. Domenico Piccolo & Rosaria Simone, 2019. "The class of cub models: statistical foundations, inferential issues and empirical evidence," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 28(3), pages 389-435, September.
    9. Yayan Hernuryadin & Koji Kotani & Tatsuyoshi Saijo, 2020. "Time Preferences of Food Producers: Does “Cultivate and Grow” Matter?," Land Economics, University of Wisconsin Press, vol. 96(1), pages 132-148.
    10. Mhamed Ben Salah & Cédric Chambru & Maleke Fourati, 2022. "The colonial legacy of education: evidence from of Tunisia," ECON - Working Papers 411, Department of Economics - University of Zurich, revised Sep 2024.
    11. Ameztegui, Aitor & Coll, Lluís & Messier, Christian, 2015. "Modelling the effect of climate-induced changes in recruitment and juvenile growth on mixed-forest dynamics: The case of montane–subalpine Pyrenean ecotones," Ecological Modelling, Elsevier, vol. 313(C), pages 84-93.
    12. Sokolova, Maria V., 2016. "Exchange Rates, International Trade and Growth: Re-Evaluation of Undervaluation," Conference papers 332790, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    13. Grün, Bettina & Kosmidis, Ioannis & Zeileis, Achim, 2012. "Extended Beta Regression in R: Shaken, Stirred, Mixed, and Partitioned," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 48(i11).
    14. Dries P.J. Kuijper & Jakub W. Bubnicki & Marcin Churski & Bjorn Mols & Pim van Hooft, 2015. "Context dependence of risk effects: wolves and tree logs create patches of fear in an old-growth forest," Behavioral Ecology, International Society for Behavioral Ecology, vol. 26(6), pages 1558-1568.
    15. Guillermo Martínez-Flórez & Artur J. Lemonte & Germán Moreno-Arenas & Roger Tovar-Falón, 2022. "The Bivariate Unit-Sinh-Normal Distribution and Its Related Regression Model," Mathematics, MDPI, vol. 10(17), pages 1-26, August.
    16. Akoh Fabien Yao & Maxime Sèbe & Laura Recuero Virto & Abdelhak Nassiri & Hervé Dumez, 2024. "The effect of LNG bunkering on port competitiveness using multilevel data analysis [L'effet du soutage par GNL sur la compétitivité des ports à l'aide de l'analyse de données à plusieurs niveaux]," Post-Print hal-04611804, HAL.
    17. Qin Ma & Yanjun Su & Chunyue Niu & Qin Ma & Tianyu Hu & Xiangzhong Luo & Xiaonan Tai & Tong Qiu & Yao Zhang & Roger C. Bales & Lingli Liu & Maggi Kelly & Qinghua Guo, 2023. "Tree mortality during long-term droughts is lower in structurally complex forest stands," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    18. Maria De Paola & Vincenzo Scoppa, 2012. "The Causal Impact Of Closeness On Electoral Participation Exploiting The Italian Dual Ballot System," Working Papers 201203, Università della Calabria, Dipartimento di Economia, Statistica e Finanza "Giovanni Anania" - DESF.
    19. Piotr Archiciński & Arkadiusz Przybysz & Daria Sikorska & Marzena Wińska-Krysiak & Anderson Rodrigo Da Silva & Piotr Sikorski, 2024. "Conservation Management Practices for Biodiversity Preservation in Urban Informal Green Spaces: Lessons from Central European City," Land, MDPI, vol. 13(6), pages 1-22, May.
    20. Zeileis, Achim, 2006. "Implementing a class of structural change tests: An econometric computing approach," Computational Statistics & Data Analysis, Elsevier, vol. 50(11), pages 2987-3008, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:9:y:2021:i:21:p:2836-:d:674697. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.