IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v278y2019i2p442-447.html
   My bibliography  Save this article

Improving discriminating power in data envelopment models based on deviation variables framework

Author

Listed:
  • Ghasemi, Mohammad Reza
  • Ignatius, Joshua
  • Rezaee, Babak

Abstract

Lack of discriminating power in efficiency values remain a major contention in the literature of data envelopment analysis (DEA). To overcome this problem, a well-known procedure for ranking efficient units; that is, the super-efficiency model was proposed. The method enables an extreme efficient DMU to achieve an efficiency value greater than one by excluding the DMU under evaluation from the reference set of the DEA model. However, infeasibility problems may persist while applying the super-efficiency DEA model under the constant returns-to-scale (CRS), and this problem tends to be compounded under the variable returns-to-scale (VRS). In order to address this drawback sufficiently, we extend the deviation variable form of classical VRS technique and propose a procedure for ranking efficient units based on the deviation variables values framework in both forms – CRS and VRS. With our proposed method, scholars who wish to prescribe theories based on a set of contextual factors need not remove large number of DMUs that are infeasible, thus avoiding problems in generalizability of their findings. We illustrate the performance and validate the efficacy of our proposed method against alternative methods with two established numerical examples.

Suggested Citation

  • Ghasemi, Mohammad Reza & Ignatius, Joshua & Rezaee, Babak, 2019. "Improving discriminating power in data envelopment models based on deviation variables framework," European Journal of Operational Research, Elsevier, vol. 278(2), pages 442-447.
  • Handle: RePEc:eee:ejores:v:278:y:2019:i:2:p:442-447
    DOI: 10.1016/j.ejor.2018.08.046
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221718307410
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2018.08.046?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Per Andersen & Niels Christian Petersen, 1993. "A Procedure for Ranking Efficient Units in Data Envelopment Analysis," Management Science, INFORMS, vol. 39(10), pages 1261-1264, October.
    2. Lee, Hsuan-Shih & Chu, Ching-Wu & Zhu, Joe, 2011. "Super-efficiency DEA in the presence of infeasibility," European Journal of Operational Research, Elsevier, vol. 212(1), pages 141-147, July.
    3. Soleimani-damaneh, M. & Jahanshahloo, G.R. & Foroughi, A.A., 2006. "A comment on "Measuring super-efficiency in DEA in the presence of infeasibility"," European Journal of Operational Research, Elsevier, vol. 170(1), pages 323-325, April.
    4. Ahn, Taesik & Charnes, Abraham & Cooper, William W., 1988. "Efficiency characterizations in different DEA models," Socio-Economic Planning Sciences, Elsevier, vol. 22(6), pages 253-257.
    5. Lidia Angulo-Meza & Marcos Lins, 2002. "Review of Methods for Increasing Discrimination in Data Envelopment Analysis," Annals of Operations Research, Springer, vol. 116(1), pages 225-242, October.
    6. Chen, Yao & Du, Juan & Huo, Jiazhen, 2013. "Super-efficiency based on a modified directional distance function," Omega, Elsevier, vol. 41(3), pages 621-625.
    7. Wang, Ying-Ming & Chin, Kwai-Sang, 2011. "The use of OWA operator weights for cross-efficiency aggregation," Omega, Elsevier, vol. 39(5), pages 493-503, October.
    8. Y-W Chen & M Larbani & Y-P Chang, 2009. "Multiobjective data envelopment analysis," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(11), pages 1556-1566, November.
    9. Hatami-Marbini, Adel & Emrouznejad, Ali & Tavana, Madjid, 2011. "A taxonomy and review of the fuzzy data envelopment analysis literature: Two decades in the making," European Journal of Operational Research, Elsevier, vol. 214(3), pages 457-472, November.
    10. Charnes, A. & Cooper, W. W. & Rhodes, E., 1978. "Measuring the efficiency of decision making units," European Journal of Operational Research, Elsevier, vol. 2(6), pages 429-444, November.
    11. Green, Rodney H. & Doyle, John R. & Cook, Wade D., 1996. "Preference voting and project ranking using DEA and cross-evaluation," European Journal of Operational Research, Elsevier, vol. 90(3), pages 461-472, May.
    12. Joe Zhu, 2014. "DEA Cross Efficiency," International Series in Operations Research & Management Science, in: Quantitative Models for Performance Evaluation and Benchmarking, edition 3, chapter 4, pages 61-92, Springer.
    13. Banker, Rajiv D. & Chang, Hsihui, 2006. "The super-efficiency procedure for outlier identification, not for ranking efficient units," European Journal of Operational Research, Elsevier, vol. 175(2), pages 1311-1320, December.
    14. W D Cook & J Zhu, 2014. "DEA Cobb–Douglas frontier and cross-efficiency," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 65(2), pages 265-268, February.
    15. Li, Xiao-Bai & Reeves, Gary R., 1999. "A multiple criteria approach to data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 115(3), pages 507-517, June.
    16. W D Cook & L Liang & Y Zha & J Zhu, 2009. "A modified super-efficiency DEA model for infeasibility," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(2), pages 276-281, February.
    17. Chen, Yao, 2005. "Measuring super-efficiency in DEA in the presence of infeasibility," European Journal of Operational Research, Elsevier, vol. 161(2), pages 545-551, March.
    18. Adler, Nicole & Friedman, Lea & Sinuany-Stern, Zilla, 2002. "Review of ranking methods in the data envelopment analysis context," European Journal of Operational Research, Elsevier, vol. 140(2), pages 249-265, July.
    19. R. D. Banker & A. Charnes & W. W. Cooper, 1984. "Some Models for Estimating Technical and Scale Inefficiencies in Data Envelopment Analysis," Management Science, INFORMS, vol. 30(9), pages 1078-1092, September.
    20. Rubem, Ana Paula dos Santos & Soares de Mello, João Carlos C.B. & Angulo Meza, Lidia, 2017. "A goal programming approach to solve the multiple criteria DEA model," European Journal of Operational Research, Elsevier, vol. 260(1), pages 134-139.
    21. Ghasemi, M.-R. & Ignatius, Joshua & Emrouznejad, Ali, 2014. "A bi-objective weighted model for improving the discrimination power in MCDEA," European Journal of Operational Research, Elsevier, vol. 233(3), pages 640-650.
    22. Emrouznejad, Ali & Parker, Barnett R. & Tavares, Gabriel, 2008. "Evaluation of research in efficiency and productivity: A survey and analysis of the first 30 years of scholarly literature in DEA," Socio-Economic Planning Sciences, Elsevier, vol. 42(3), pages 151-157, September.
    23. Lee, Hsuan-Shih & Zhu, Joe, 2012. "Super-efficiency infeasibility and zero data in DEA," European Journal of Operational Research, Elsevier, vol. 216(2), pages 429-433.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Panagiotis Mitropoulos & Alexandros Mitropoulos, 2023. "Evaluating efficiency and technology gaps of the national systems of entrepreneurship using stochastic DEA and club convergence," Operational Research, Springer, vol. 23(1), pages 1-28, March.
    2. Mahdiloo, Mahdi & Lim, Sungmook & Duong, Thach-Thao & Harvie, Charles, 2021. "Some comments on improving discriminating power in data envelopment models based on deviation variables framework," European Journal of Operational Research, Elsevier, vol. 295(1), pages 394-397.
    3. da Silva, Aneirson Francisco & Miranda, Rafael de Carvalho & Marins, Fernando Augusto Silva & Dias, Erica Ximenes, 2024. "A new multiple criteria data envelopment analysis with variable return to scale: Applying bi-dimensional representation and super-efficiency analysis," European Journal of Operational Research, Elsevier, vol. 314(1), pages 308-322.
    4. Shenzi Yang & Guoqing Zhao & Fan Li, 2024. "The Efficiency Evaluation of DEA Model Incorporating Improved Possibility Theory," Mathematics, MDPI, vol. 12(19), pages 1-24, October.
    5. Toloo, Mehdi & Tone, Kaoru & Izadikhah, Mohammad, 2023. "Selecting slacks-based data envelopment analysis models," European Journal of Operational Research, Elsevier, vol. 308(3), pages 1302-1318.
    6. Ebrahimi, Bohlool & Dhamotharan, Lalitha & Ghasemi, Mohammad Reza & Charles, Vincent, 2022. "A cross-inefficiency approach based on the deviation variables framework," Omega, Elsevier, vol. 111(C).
    7. Fang, Tao & Fang, Debin & Yu, Bolin, 2022. "Carbon emission efficiency of thermal power generation in China: Empirical evidence from the micro-perspective of power plants," Energy Policy, Elsevier, vol. 165(C).
    8. Qu, Jingjing & Wang, Baohui & Liu, Xiaohong, 2022. "A modified super-efficiency network data envelopment analysis: Assessing regional sustainability performance in China," Socio-Economic Planning Sciences, Elsevier, vol. 82(PB).
    9. Shabani, Amir & Maroti, Gabor & de Leeuw, Sander & Dullaert, Wout, 2021. "Inventory record inaccuracy and store-level performance," International Journal of Production Economics, Elsevier, vol. 235(C).
    10. Boďa, Martin, 2024. "Financial depth versus more comprehensive metrics of financial development in tests of the finance-growth nexus," Economic Systems, Elsevier, vol. 48(1).
    11. Ardavan Babaei & Majid Khedmati & Mohammad Reza Akbari Jokar, 2023. "A new branch and efficiency algorithm for an optimal design of the supply chain network in view of resilience, inequity and traffic congestion," Annals of Operations Research, Springer, vol. 321(1), pages 49-78, February.
    12. Charles, Vincent & Aparicio, Juan & Zhu, Joe, 2019. "The curse of dimensionality of decision-making units: A simple approach to increase the discriminatory power of data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 279(3), pages 929-940.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ghasemi, M.-R. & Ignatius, Joshua & Emrouznejad, Ali, 2014. "A bi-objective weighted model for improving the discrimination power in MCDEA," European Journal of Operational Research, Elsevier, vol. 233(3), pages 640-650.
    2. Rezaeiani, M.J. & Foroughi, A.A., 2018. "Ranking efficient decision making units in data envelopment analysis based on reference frontier share," European Journal of Operational Research, Elsevier, vol. 264(2), pages 665-674.
    3. Fang, Tao & Fang, Debin & Yu, Bolin, 2022. "Carbon emission efficiency of thermal power generation in China: Empirical evidence from the micro-perspective of power plants," Energy Policy, Elsevier, vol. 165(C).
    4. Guo-Ya Gan & Hsuan-Shih Lee, 2021. "Resolving the infeasibility of the super-efficiency DEA based on DDF," Annals of Operations Research, Springer, vol. 307(1), pages 139-152, December.
    5. Ebrahimi, Bohlool & Dhamotharan, Lalitha & Ghasemi, Mohammad Reza & Charles, Vincent, 2022. "A cross-inefficiency approach based on the deviation variables framework," Omega, Elsevier, vol. 111(C).
    6. Liu, John S. & Lu, Louis Y.Y. & Lu, Wen-Min, 2016. "Research fronts in data envelopment analysis," Omega, Elsevier, vol. 58(C), pages 33-45.
    7. Zervopoulos, Panagiotis & Emrouznejad, Ali & Sklavos, Sokratis, 2019. "A Bayesian approach for correcting bias of data envelopment analysis estimators," MPRA Paper 91886, University Library of Munich, Germany.
    8. Tran, Trung Hieu & Mao, Yong & Nathanail, Paul & Siebers, Peer-Olaf & Robinson, Darren, 2019. "Integrating slacks-based measure of efficiency and super-efficiency in data envelopment analysis," Omega, Elsevier, vol. 85(C), pages 156-165.
    9. Aneirson Francisco Silva & Fernando Augusto S. Marins & Erica Ximenes Dias, 2020. "Improving the discrimination power with a new multi-criteria data envelopment model," Annals of Operations Research, Springer, vol. 287(1), pages 127-159, April.
    10. Lin, Ruiyue & Liu, Yue, 2019. "Super-efficiency based on the directional distance function in the presence of negative data," Omega, Elsevier, vol. 85(C), pages 26-34.
    11. Esteve, Miriam & Aparicio, Juan & Rodriguez-Sala, Jesus J. & Zhu, Joe, 2023. "Random Forests and the measurement of super-efficiency in the context of Free Disposal Hull," European Journal of Operational Research, Elsevier, vol. 304(2), pages 729-744.
    12. Eugenia Nissi & Annalina Sarra, 2018. "A Measure of Well-Being Across the Italian Urban Areas: An Integrated DEA-Entropy Approach," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 136(3), pages 1183-1209, April.
    13. Fang, Hsin-Hsiung & Lee, Hsuan-Shih & Hwang, Shiuh-Nan & Chung, Cheng-Chi, 2013. "A slacks-based measure of super-efficiency in data envelopment analysis: An alternative approach," Omega, Elsevier, vol. 41(4), pages 731-734.
    14. Simon de Blas, Clara & Simon Martin, Jose & Gomez Gonzalez, Daniel, 2018. "Combined social networks and data envelopment analysis for ranking," European Journal of Operational Research, Elsevier, vol. 266(3), pages 990-999.
    15. Li, Yongjun & Xie, Jianhui & Wang, Meiqiang & Liang, Liang, 2016. "Super efficiency evaluation using a common platform on a cooperative game," European Journal of Operational Research, Elsevier, vol. 255(3), pages 884-892.
    16. Chen, Yao & Du, Juan & Huo, Jiazhen, 2013. "Super-efficiency based on a modified directional distance function," Omega, Elsevier, vol. 41(3), pages 621-625.
    17. da Silva, Aneirson Francisco & Miranda, Rafael de Carvalho & Marins, Fernando Augusto Silva & Dias, Erica Ximenes, 2024. "A new multiple criteria data envelopment analysis with variable return to scale: Applying bi-dimensional representation and super-efficiency analysis," European Journal of Operational Research, Elsevier, vol. 314(1), pages 308-322.
    18. Cheng, Gang & Zervopoulos, Panagiotis, 2012. "A proxy approach to dealing with the infeasibility problem in super-efficiency data envelopment analysis," MPRA Paper 42064, University Library of Munich, Germany.
    19. Guo, I-Lung & Lee, Hsuan-Shih & Lee, Dan, 2017. "An integrated model for slack-based measure of super-efficiency in additive DEA," Omega, Elsevier, vol. 67(C), pages 160-167.
    20. Baldin, Andrea, 2017. "A DEA approach for selecting a bundle of tickets for performing arts events," Journal of Retailing and Consumer Services, Elsevier, vol. 39(C), pages 190-200.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:278:y:2019:i:2:p:442-447. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.