IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v213y2011i1p359-360.html
   My bibliography  Save this article

Super-efficiency DEA in the presence of infeasibility: One model approach

Author

Listed:
  • Chen, Yao
  • Liang, Liang

Abstract

A two-stage procedure is developed by Lee et al. (2011) [European Journal of Operational Research doi:10.1016/j.ejor.2011.01.022] to address the infeasibility issue in super-efficiency data envelopment analysis (DEA) models. We point out that their two-stage procedure can be solved in a single DEA-based model.

Suggested Citation

  • Chen, Yao & Liang, Liang, 2011. "Super-efficiency DEA in the presence of infeasibility: One model approach," European Journal of Operational Research, Elsevier, vol. 213(1), pages 359-360, August.
  • Handle: RePEc:eee:ejores:v:213:y:2011:i:1:p:359-360
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377-2217(11)00237-2
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lee, Hsuan-Shih & Chu, Ching-Wu & Zhu, Joe, 2011. "Super-efficiency DEA in the presence of infeasibility," European Journal of Operational Research, Elsevier, vol. 212(1), pages 141-147, July.
    2. W D Cook & L Liang & Y Zha & J Zhu, 2009. "A modified super-efficiency DEA model for infeasibility," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(2), pages 276-281, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lee, Hsuan-Shih, 2022. "Integrating SBM model and Super-SBM model: a one-model approach," Omega, Elsevier, vol. 113(C).
    2. Chen, Chien-Ming, 2013. "Super efficiencies or super inefficiencies? Insights from a joint computation model for slacks-based measures in DEA," European Journal of Operational Research, Elsevier, vol. 226(2), pages 258-267.
    3. Mohsen Afsharian, 2020. "A metafrontier-based yardstick competition mechanism for incentivising units in centrally managed multi-group organisations," Annals of Operations Research, Springer, vol. 288(2), pages 681-700, May.
    4. Zohreh Sadeghi & Reza Farzipoor Saen & Mahdi Moradzadehfard, 2022. "RETRACTED ARTICLE: Developing a network data envelopment analysis model for appraising sustainable supply chains: a sustainability accounting approach," Operations Management Research, Springer, vol. 15(3), pages 809-824, December.
    5. Majid Azadi & Zohreh Moghaddas & Reza Farzipoor Saen & Angappa Gunasekaran & Sachin Kumar Mangla & Alessio Ishizaka, 2023. "Using network data envelopment analysis to assess the sustainability and resilience of healthcare supply chains in response to the COVID-19 pandemic," Annals of Operations Research, Springer, vol. 328(1), pages 107-150, September.
    6. Afsharian, Mohsen & Ahn, Heinz & Thanassoulis, Emmanuel, 2017. "A DEA-based incentives system for centrally managed multi-unit organisations," European Journal of Operational Research, Elsevier, vol. 259(2), pages 587-598.
    7. Atwood, Joseph & Shaik, Saleem, 2020. "Theory and statistical properties of Quantile Data Envelopment Analysis," European Journal of Operational Research, Elsevier, vol. 286(2), pages 649-661.
    8. Qu, Jingjing & Wang, Baohui & Liu, Xiaohong, 2022. "A modified super-efficiency network data envelopment analysis: Assessing regional sustainability performance in China," Socio-Economic Planning Sciences, Elsevier, vol. 82(PB).
    9. Zervopoulos, Panagiotis & Emrouznejad, Ali & Sklavos, Sokratis, 2019. "A Bayesian approach for correcting bias of data envelopment analysis estimators," MPRA Paper 91886, University Library of Munich, Germany.
    10. Lee, Hsuan-Shih & Zhu, Joe, 2012. "Super-efficiency infeasibility and zero data in DEA," European Journal of Operational Research, Elsevier, vol. 216(2), pages 429-433.
    11. Baldin, Andrea, 2017. "A DEA approach for selecting a bundle of tickets for performing arts events," Journal of Retailing and Consumer Services, Elsevier, vol. 39(C), pages 190-200.
    12. Ya Chen & Yongjun Li & Liang Liang & Huaqing Wu, 2019. "An extension on super slacks-based measure DEA approach," Annals of Operations Research, Springer, vol. 278(1), pages 101-121, July.
    13. Guo-Ya Gan & Hsuan-Shih Lee, 2019. "An alternative MILP-DEA model to choose efficient unit without explicit inputs," Annals of Operations Research, Springer, vol. 278(1), pages 379-391, July.
    14. Branda, Martin, 2013. "Diversification-consistent data envelopment analysis with general deviation measures," European Journal of Operational Research, Elsevier, vol. 226(3), pages 626-635.
    15. Ghasemi, M.-R. & Ignatius, Joshua & Emrouznejad, Ali, 2014. "A bi-objective weighted model for improving the discrimination power in MCDEA," European Journal of Operational Research, Elsevier, vol. 233(3), pages 640-650.
    16. Ya Chen & Justin Wang & Joe Zhu & H. David Sherman & Shin-Yi Chou, 2019. "How the Great Recession affects performance: a case of Pennsylvania hospitals using DEA," Annals of Operations Research, Springer, vol. 278(1), pages 77-99, July.
    17. Guo-Ya Gan & Hsuan-Shih Lee, 2021. "Resolving the infeasibility of the super-efficiency DEA based on DDF," Annals of Operations Research, Springer, vol. 307(1), pages 139-152, December.
    18. Rezaeiani, M.J. & Foroughi, A.A., 2018. "Ranking efficient decision making units in data envelopment analysis based on reference frontier share," European Journal of Operational Research, Elsevier, vol. 264(2), pages 665-674.
    19. Zhongbao Zhou & Qianying Jin & Jian Peng & Helu Xiao & Shijian Wu, 2019. "Further Study of the DEA-Based Framework for Performance Evaluation of Competing Crude Oil Prices’ Volatility Forecasting Models," Mathematics, MDPI, vol. 7(9), pages 1-10, September.
    20. Chang, Kai & Wan, Qiong & Lou, Qichun & Chen, Yili & Wang, Weihong, 2020. "Green fiscal policy and firms’ investment efficiency: New insights into firm-level panel data from the renewable energy industry in China," Renewable Energy, Elsevier, vol. 151(C), pages 589-597.
    21. Li, Yongjun & Xie, Jianhui & Wang, Meiqiang & Liang, Liang, 2016. "Super efficiency evaluation using a common platform on a cooperative game," European Journal of Operational Research, Elsevier, vol. 255(3), pages 884-892.
    22. Hangbiao Shang & Chuwei Yang, 2022. "Towards Carbon Neutrality: The Innovation Efficiency of China’s Forestry Green Technology and Its Spatial Spillover Effects," Land, MDPI, vol. 11(7), pages 1-18, July.
    23. Fang, Hsin-Hsiung & Lee, Hsuan-Shih & Hwang, Shiuh-Nan & Chung, Cheng-Chi, 2013. "A slacks-based measure of super-efficiency in data envelopment analysis: An alternative approach," Omega, Elsevier, vol. 41(4), pages 731-734.
    24. Guo, I-Lung & Lee, Hsuan-Shih & Lee, Dan, 2017. "An integrated model for slack-based measure of super-efficiency in additive DEA," Omega, Elsevier, vol. 67(C), pages 160-167.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Atwood, Joseph & Shaik, Saleem, 2020. "Theory and statistical properties of Quantile Data Envelopment Analysis," European Journal of Operational Research, Elsevier, vol. 286(2), pages 649-661.
    2. Zervopoulos, Panagiotis & Emrouznejad, Ali & Sklavos, Sokratis, 2019. "A Bayesian approach for correcting bias of data envelopment analysis estimators," MPRA Paper 91886, University Library of Munich, Germany.
    3. Cheng, Gang & Zervopoulos, Panagiotis, 2012. "A proxy approach to dealing with the infeasibility problem in super-efficiency data envelopment analysis," MPRA Paper 42064, University Library of Munich, Germany.
    4. Lin, Ruiyue & Liu, Yue, 2019. "Super-efficiency based on the directional distance function in the presence of negative data," Omega, Elsevier, vol. 85(C), pages 26-34.
    5. Guo-Ya Gan & Hsuan-Shih Lee, 2021. "Resolving the infeasibility of the super-efficiency DEA based on DDF," Annals of Operations Research, Springer, vol. 307(1), pages 139-152, December.
    6. Ghasemi, M.-R. & Ignatius, Joshua & Emrouznejad, Ali, 2014. "A bi-objective weighted model for improving the discrimination power in MCDEA," European Journal of Operational Research, Elsevier, vol. 233(3), pages 640-650.
    7. Ghasemi, Mohammad Reza & Ignatius, Joshua & Rezaee, Babak, 2019. "Improving discriminating power in data envelopment models based on deviation variables framework," European Journal of Operational Research, Elsevier, vol. 278(2), pages 442-447.
    8. Lee, Hsuan-Shih & Zhu, Joe, 2012. "Super-efficiency infeasibility and zero data in DEA," European Journal of Operational Research, Elsevier, vol. 216(2), pages 429-433.
    9. Chen, Yao & Du, Juan & Huo, Jiazhen, 2013. "Super-efficiency based on a modified directional distance function," Omega, Elsevier, vol. 41(3), pages 621-625.
    10. Guo, I-Lung & Lee, Hsuan-Shih & Lee, Dan, 2017. "An integrated model for slack-based measure of super-efficiency in additive DEA," Omega, Elsevier, vol. 67(C), pages 160-167.
    11. Baldin, Andrea, 2017. "A DEA approach for selecting a bundle of tickets for performing arts events," Journal of Retailing and Consumer Services, Elsevier, vol. 39(C), pages 190-200.
    12. Ruiyue Lin & Zhiping Chen, 2017. "A directional distance based super-efficiency DEA model handling negative data," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 68(11), pages 1312-1322, November.
    13. Ya Chen & Yongjun Li & Liang Liang & Huaqing Wu, 2019. "An extension on super slacks-based measure DEA approach," Annals of Operations Research, Springer, vol. 278(1), pages 101-121, July.
    14. Chen, Nengcheng & Xu, Lei & Chen, Zeqiang, 2017. "Environmental efficiency analysis of the Yangtze River Economic Zone using super efficiency data envelopment analysis (SEDEA) and tobit models," Energy, Elsevier, vol. 134(C), pages 659-671.
    15. Rezaeiani, M.J. & Foroughi, A.A., 2018. "Ranking efficient decision making units in data envelopment analysis based on reference frontier share," European Journal of Operational Research, Elsevier, vol. 264(2), pages 665-674.
    16. Fang, Hsin-Hsiung & Lee, Hsuan-Shih & Hwang, Shiuh-Nan & Chung, Cheng-Chi, 2013. "A slacks-based measure of super-efficiency in data envelopment analysis: An alternative approach," Omega, Elsevier, vol. 41(4), pages 731-734.
    17. Zohreh Sadeghi & Reza Farzipoor Saen & Mahdi Moradzadehfard, 2022. "RETRACTED ARTICLE: Developing a network data envelopment analysis model for appraising sustainable supply chains: a sustainability accounting approach," Operations Management Research, Springer, vol. 15(3), pages 809-824, December.
    18. Ya Chen & Justin Wang & Joe Zhu & H. David Sherman & Shin-Yi Chou, 2019. "How the Great Recession affects performance: a case of Pennsylvania hospitals using DEA," Annals of Operations Research, Springer, vol. 278(1), pages 77-99, July.
    19. Renata Machado de Andrade & Suhyung Lee & Paul Tae-Woo Lee & Oh Kyoung Kwon & Hye Min Chung, 2019. "Port Efficiency Incorporating Service Measurement Variables by the BiO-MCDEA: Brazilian Case," Sustainability, MDPI, vol. 11(16), pages 1-18, August.
    20. Boccali, Filippo & Mariani, Marcello M. & Visani, Franco & Mora-Cruz, Alexandra, 2022. "Innovative value-based price assessment in data-rich environments: Leveraging online review analytics through Data Envelopment Analysis to empower managers and entrepreneurs," Technological Forecasting and Social Change, Elsevier, vol. 182(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:213:y:2011:i:1:p:359-360. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.