IDEAS home Printed from https://ideas.repec.org/a/eee/ecmode/v80y2019icp352-382.html
   My bibliography  Save this article

Does international oil volatility have directional predictability for stock returns? Evidence from BRICS countries based on cross-quantilogram analysis

Author

Listed:
  • Zhou, Zhongbao
  • Jiang, Yong
  • Liu, Yan
  • Lin, Ling
  • Liu, Qing

Abstract

While numerous studies have investigated the relationship between oil volatility and stock returns, it is surprising that little research has examined the quantile dependence and directional predictability from oil volatility to stock returns in BRICS (Brazil, Russia, India, China, and South Africa) countries. We address this issue by using the cross-quantilogram model proposed by Han et al. (2016). The empirical results show that, overall, oil volatility has a directional predictability for the stock returns in BRICS countries. When the oil volatility is in a low quantile (lower than its 0.1 quantiles), it is less likely to show either a large loss or a large gain in the stock market. In contrast, there is an increased likelihood of either large loss or a large gain in the stock market when the oil volatility is in a high quantile (higher than its 0.9 quantiles). The directional predictability from the oil volatility to stock returns depends on the net position of oil imports and exports of these BRICS countries in the oil market. The net oil exporters (Russia and Brazil) are less likely to have large gains and large losses in the stock market than are the net oil importers (India, China, and South Africa) when the oil volatility is in a low quantile. The net oil exporters are more likely to have large gains and large losses than are the net oil importers when the oil volatility is in a high quantile. The results are robust to change in the variable of oil volatility and the sample interval.

Suggested Citation

  • Zhou, Zhongbao & Jiang, Yong & Liu, Yan & Lin, Ling & Liu, Qing, 2019. "Does international oil volatility have directional predictability for stock returns? Evidence from BRICS countries based on cross-quantilogram analysis," Economic Modelling, Elsevier, vol. 80(C), pages 352-382.
  • Handle: RePEc:eee:ecmode:v:80:y:2019:i:c:p:352-382
    DOI: 10.1016/j.econmod.2018.11.021
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0264999317312750
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.econmod.2018.11.021?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Hailing & Pei, Xiaoyun & Yang, Yimin & Zhang, Hua, 2024. "Assessing the impact of energy-related uncertainty on G20 stock market returns: A decomposed contemporaneous and lagged R2 connectedness approach," Energy Economics, Elsevier, vol. 132(C).
    2. Atil, Ahmed & Nawaz, Kishwar & Lahiani, Amine & Roubaud, David, 2020. "Are natural resources a blessing or a curse for financial development in Pakistan? The importance of oil prices, economic growth and economic globalization," Resources Policy, Elsevier, vol. 67(C).
    3. Naeem, Muhammad Abubakr & Pham, Linh & Senthilkumar, Arunachalam & Karim, Sitara, 2022. "Oil shocks and BRIC markets: Evidence from extreme quantile approach," Energy Economics, Elsevier, vol. 108(C).
    4. Kumar, Satish & Khalfaoui, Rabeh & Tiwari, Aviral Kumar, 2021. "Does geopolitical risk improve the directional predictability from oil to stock returns? Evidence from oil-exporting and oil-importing countries," Resources Policy, Elsevier, vol. 74(C).
    5. Aviral Kumar Tiwari & Muhammad Shahbaz & Rabeh Khalfaoui & Rizwan Ahmed & Shawkat Hammoudeh, 2024. "Directional predictability from energy markets to exchange rates and stock markets in the emerging market countries (E7 + 1): New evidence from cross‐quantilogram approach," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 29(1), pages 719-789, January.
    6. Jiang, Yong & Liu, Cenjie & Xie, Rui, 2021. "Oil price shocks and credit spread: Structural effect and dynamic spillover," The North American Journal of Economics and Finance, Elsevier, vol. 58(C).
    7. Urom, C. & Mzoughi, Hela & Ndubuisi, Gideon & Guesmi, K., 2022. "Dynamic dependence between clean investments and economic policy uncertainty," MERIT Working Papers 2022-027, United Nations University - Maastricht Economic and Social Research Institute on Innovation and Technology (MERIT).
    8. Zhou, Zhongbao & Fu, Zhangyan & Jiang, Yong & Zeng, Ximei & Lin, Ling, 2020. "Can economic policy uncertainty predict exchange rate volatility? New evidence from the GARCH-MIDAS model," Finance Research Letters, Elsevier, vol. 34(C).
    9. Zhongbao Zhou & Qianying Jin & Jian Peng & Helu Xiao & Shijian Wu, 2019. "Further Study of the DEA-Based Framework for Performance Evaluation of Competing Crude Oil Prices’ Volatility Forecasting Models," Mathematics, MDPI, vol. 7(9), pages 1-10, September.
    10. Si Mohammed, Kamel & Tedeschi, Marco & Mallek, Sabrine & Tarczyńska-Łuniewska, Małgorzata & Zhang, Anqi, 2023. "Realized semi variance quantile connectedness between oil prices and stock market: Spillover from Russian-Ukraine clash," Resources Policy, Elsevier, vol. 85(PA).
    11. Xiao, Jihong & Wang, Yudong, 2022. "Good oil volatility, bad oil volatility, and stock return predictability," International Review of Economics & Finance, Elsevier, vol. 80(C), pages 953-966.
    12. Urom, Christian & Mzoughi, Hela & Ndubuisi, Gideon & Guesmi, Khaled, 2022. "Directional predictability and time-frequency spillovers among clean energy sectors and oil price uncertainty," The Quarterly Review of Economics and Finance, Elsevier, vol. 85(C), pages 326-341.
    13. Naeem, Muhammad Abubakr & Sadorsky, Perry & Karim, Sitara, 2023. "Sailing across climate-friendly bonds and clean energy stocks: An asymmetric analysis with the Gulf Cooperation Council Stock markets," Energy Economics, Elsevier, vol. 126(C).
    14. David Iheke Okorie & Boqiang Lin, 2022. "Crude oil market and Nigerian stocks: An asymmetric information spillover approach," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 27(4), pages 4002-4017, October.
    15. Huang, Jionghao & Li, Ziruo & Xia, Xiaohua, 2021. "Network diffusion of international oil volatility risk in China's stock market: Quantile interconnectedness modelling and shock decomposition analysis," International Review of Economics & Finance, Elsevier, vol. 76(C), pages 1-39.
    16. Lin, Boqiang & Su, Tong, 2020. "The linkages between oil market uncertainty and Islamic stock markets: Evidence from quantile-on-quantile approach," Energy Economics, Elsevier, vol. 88(C).
    17. Zhu, Huiming & Huang, Xi & Ye, Fangyu & Li, Shuang, 2024. "Frequency spillover effects and cross-quantile dependence between crude oil and stock markets: Evidence from BRICS and G7 countries," The North American Journal of Economics and Finance, Elsevier, vol. 70(C).
    18. Zhang, Chuanguo & Mou, Xinjie & Ye, Shuping, 2022. "How do dynamic jumps in global crude oil prices impact China's industrial sector?," Energy, Elsevier, vol. 249(C).
    19. Jiang, Yong & Ren, Yi-Shuai & Ma, Chao-Qun & Liu, Jiang-Long & Sharp, Basil, 2020. "Does the price of strategic commodities respond to U.S. partisan conflict?," Resources Policy, Elsevier, vol. 66(C).
    20. Ghaemi Asl, Mahdi & Ben Jabeur, Sami, 2024. "Could the Russia-Ukraine war stir up the persistent memory of interconnectivity among Islamic equity markets, energy commodities, and environmental factors?," Research in International Business and Finance, Elsevier, vol. 69(C).
    21. Urom, Christian & Abid, Ilyes & Guesmi, Khaled & Chevallier, Julien, 2020. "Quantile spillovers and dependence between Bitcoin, equities and strategic commodities," Economic Modelling, Elsevier, vol. 93(C), pages 230-258.
    22. Alomari, Mohammad & Mensi, Walid & Vo, Xuan Vinh & Kang, Sang Hoon, 2022. "Extreme return spillovers and connectedness between crude oil and precious metals futures markets: Implications for portfolio management," Resources Policy, Elsevier, vol. 79(C).
    23. Osman, Myriam Ben & Urom, Christian & Guesmi, Khaled & Benkraiem, Ramzi, 2024. "Economic sentiment and the cryptocurrency market in the post-COVID-19 era," International Review of Financial Analysis, Elsevier, vol. 91(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecmode:v:80:y:2019:i:c:p:352-382. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/30411 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.