IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v7y2019i7p631-d248895.html
   My bibliography  Save this article

Inspection Plan Based on the Process Capability Index Using the Neutrosophic Statistical Method

Author

Listed:
  • Muhammad Aslam

    (Department of Statistics, Faculty of Science, King Abdulaziz University, Jeddah 21551, Saudi Arabia)

  • Mohammed Albassam

    (Department of Statistics, Faculty of Science, King Abdulaziz University, Jeddah 21551, Saudi Arabia)

Abstract

The Process Capability Index (PCI) has been widely used in industry to advance the quality of a product. Neutrosophic statistics is the more generalized form of classical statistics and is applied when the data from the production process or a product lot is incomplete, incredible, and indeterminate. In this paper, we will originally propose a variable sampling plan for the PCI using neutrosophic statistics. The neutrosophic operating function will be given. The neutrosophic plan parameters will be determined using the neutrosophic optimization solution. A comparison between plans based on neutrosophic statistics and classical statistics is given. The application of the proposed neutrosophic sampling plan will be given using company data.

Suggested Citation

  • Muhammad Aslam & Mohammed Albassam, 2019. "Inspection Plan Based on the Process Capability Index Using the Neutrosophic Statistical Method," Mathematics, MDPI, vol. 7(7), pages 1-10, July.
  • Handle: RePEc:gam:jmathe:v:7:y:2019:i:7:p:631-:d:248895
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/7/7/631/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/7/7/631/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wu, Chien-Wei & Pearn, W.L. & Kotz, Samuel, 2009. "An overview of theory and practice on process capability indices for quality assurance," International Journal of Production Economics, Elsevier, vol. 117(2), pages 338-359, February.
    2. Pearn, W.L. & Wu, Chien-Wei, 2007. "An effective decision making method for product acceptance," Omega, Elsevier, vol. 35(1), pages 12-21, February.
    3. Muhammad Aslam & Muhammad Azam & Chi‐Hyuck Jun, 2015. "Various repetitive sampling plans using process capability index of multiple quality characteristics," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 31(6), pages 823-835, November.
    4. S Balamurali & Muhammad Aslam & Ahmad Liaquat, 2018. "Determination of a new mixed variable lot-size multiple dependent state sampling plan based on the process capability index," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 47(3), pages 615-627, February.
    5. S. Balamurali & Chi‐Hyuck Jun, 2011. "A new system of skip‐lot sampling plans having a provision for reducing normal inspection," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 27(3), pages 348-363, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Iván E. Villalón-Turrubiates & Rogelio López-Herrera & Jorge L. García-Alcaraz & José R. Díaz-Reza & Arturo Soto-Cabral & Iván González-Lazalde & Gerardo Grijalva-Avila & José L. Rodríguez-Álvarez, 2022. "A Non-Invasive Method to Evaluate Fuzzy Process Capability Indices via Coupled Applications of Artificial Neural Networks and the Placket–Burman DOE," Mathematics, MDPI, vol. 10(16), pages 1-27, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chien-Wei Wu & Zih-Huei Wang, 2017. "Developing a variables multiple dependent state sampling plan with simultaneous consideration of process yield and quality loss," International Journal of Production Research, Taylor & Francis Journals, vol. 55(8), pages 2351-2364, April.
    2. Chien-Wei Wu & Ming-Hung Shu & Pei-An Wang & Bi-Min Hsu, 2021. "Variables skip-lot sampling plans on the basis of process capability index for products with a low fraction of defectives," Computational Statistics, Springer, vol. 36(2), pages 1391-1413, June.
    3. Wu, Chien-Wei & Aslam, Muhammad & Jun, Chi-Hyuck, 2012. "Variables sampling inspection scheme for resubmitted lots based on the process capability index Cpk," European Journal of Operational Research, Elsevier, vol. 217(3), pages 560-566.
    4. Amy H. I. Lee & Chien-Wei Wu & Yen-Wen Chen, 2016. "A modified variables repetitive group sampling plan with the consideration of preceding lots information," Annals of Operations Research, Springer, vol. 238(1), pages 355-373, March.
    5. Amy Lee & Chien-Wei Wu & Yen-Wen Chen, 2016. "A modified variables repetitive group sampling plan with the consideration of preceding lots information," Annals of Operations Research, Springer, vol. 238(1), pages 355-373, March.
    6. Wu, Chien-Wei, 2012. "An efficient inspection scheme for variables based on Taguchi capability index," European Journal of Operational Research, Elsevier, vol. 223(1), pages 116-122.
    7. Bouslah, B. & Gharbi, A. & Pellerin, R., 2016. "Integrated production, sampling quality control and maintenance of deteriorating production systems with AOQL constraint," Omega, Elsevier, vol. 61(C), pages 110-126.
    8. Peruchi, Rogério Santana & Balestrassi, Pedro Paulo & de Paiva, Anderson Paulo & Ferreira, João Roberto & de Santana Carmelossi, Michele, 2013. "A new multivariate gage R&R method for correlated characteristics," International Journal of Production Economics, Elsevier, vol. 144(1), pages 301-315.
    9. Lepore, A. & Palumbo, B. & Castagliola, P., 2018. "A note on decision making method for product acceptance based on process capability indices Cpk and Cpmk," European Journal of Operational Research, Elsevier, vol. 267(1), pages 393-398.
    10. Li, Der-Chiang & Lin, Liang-Sian, 2013. "A new approach to assess product lifetime performance for small data sets," European Journal of Operational Research, Elsevier, vol. 230(2), pages 290-298.
    11. Michele Scagliarini, 2011. "Multivariate process capability using principal component analysis in the presence of measurement errors," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 95(2), pages 113-128, June.
    12. Marta Benková & Dagmar Bednárová & Gabriela Bogdanovská, 2024. "Process Capability Evaluation Using Capability Indices as a Part of Statistical Process Control," Mathematics, MDPI, vol. 12(11), pages 1-29, May.
    13. Pedro Veiga & Luis Mendes & Luis Lourenço, 2016. "A retrospective view of statistical quality control research and identification of emerging trends: a bibliometric analysis," Quality & Quantity: International Journal of Methodology, Springer, vol. 50(2), pages 673-692, March.
    14. Ji Hwan Cha & Maxim Finkelstein, 2023. "Acceptance reliability sampling plan for items from heterogeneous populations," Journal of Risk and Reliability, , vol. 237(6), pages 1199-1208, December.
    15. George Sebastian & Sasi Ajitha, 2017. "Bootstrap Lower Confidence Limits of Superstructure Process Capability Indices for Esscher-Transformed Laplace Distribution," Stochastics and Quality Control, De Gruyter, vol. 32(2), pages 87-98, December.
    16. Kuen-Suan Chen & Tsang-Chuan Chang & Chien-Che Huang, 2020. "Supplier Selection by Fuzzy Assessment and Testing for Process Quality under Consideration with Data Imprecision," Mathematics, MDPI, vol. 8(9), pages 1-14, August.
    17. Wang, Ching-Hsin & Chen, Kuen-Suan, 2020. "New process yield index of asymmetric tolerances for bootstrap method and six sigma approach," International Journal of Production Economics, Elsevier, vol. 219(C), pages 216-223.
    18. Seebacher, Gottfried & Winkler, Herwig, 2015. "A capability approach to evaluate supply chain flexibility," International Journal of Production Economics, Elsevier, vol. 167(C), pages 177-186.
    19. Yang, Yefei & Lee, Peter K.C. & Cheng, T.C.E., 2016. "Continuous improvement competence, employee creativity, and new service development performance: A frontline employee perspective," International Journal of Production Economics, Elsevier, vol. 171(P2), pages 275-288.
    20. Velásquez, J.D. & Nof, S.Y., 2009. "Best-matching protocols for assembly in e-work networks," International Journal of Production Economics, Elsevier, vol. 122(1), pages 508-516, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:7:y:2019:i:7:p:631-:d:248895. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.