IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v267y2018i1p393-398.html
   My bibliography  Save this article

A note on decision making method for product acceptance based on process capability indices Cpk and Cpmk

Author

Listed:
  • Lepore, A.
  • Palumbo, B.
  • Castagliola, P.

Abstract

In this short note, we prove that the derivation of the required sample size and critical acceptance value under the normality assumption of the quality characteristic proposed by Wu, C. W., Aslam, M., & Jun, C. H. (2012). Variables sampling inspection scheme for resubmitted lots based on the process capability index Cpk. European Journal of Operational Research, 217(3), 560–566, is inappropriate. In fact, it leads to a lower probability of acceptance than the one desired by the producer. The same issue also occurs in the case of a variables single sampling plan described in a previous paper by Pearn, W. L., & Wu, C. W. (2007). An effective decision making method for product acceptance. Omega, 35(1), 12–21. Nevertheless, a similar yet less severe inaccuracy is also noticed in Wu, C. W., & Pearn, W. L. (2008). A variables sampling plan based on Cpmk for product acceptance determination. European Journal of Operational Research, 184(2), 549–560.

Suggested Citation

  • Lepore, A. & Palumbo, B. & Castagliola, P., 2018. "A note on decision making method for product acceptance based on process capability indices Cpk and Cpmk," European Journal of Operational Research, Elsevier, vol. 267(1), pages 393-398.
  • Handle: RePEc:eee:ejores:v:267:y:2018:i:1:p:393-398
    DOI: 10.1016/j.ejor.2017.12.032
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221717311657
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2017.12.032?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hsu, Ya-Chen & Pearn, W.L. & Wu, Pei-Ching, 2008. "Capability adjustment for gamma processes with mean shift consideration in implementing Six Sigma program," European Journal of Operational Research, Elsevier, vol. 191(2), pages 517-529, December.
    2. Wu, Chien-Wei & Pearn, W.L., 2008. "A variables sampling plan based on Cpmk for product acceptance determination," European Journal of Operational Research, Elsevier, vol. 184(2), pages 549-560, January.
    3. Nourelfath, Mustapha & Hassan, Jawad, 2015. "Six Sigma performance for non-normal processesAuthor-Name: Aldowaisan, Tariq," European Journal of Operational Research, Elsevier, vol. 247(3), pages 968-977.
    4. Wu, Chien-Wei & Aslam, Muhammad & Jun, Chi-Hyuck, 2012. "Variables sampling inspection scheme for resubmitted lots based on the process capability index Cpk," European Journal of Operational Research, Elsevier, vol. 217(3), pages 560-566.
    5. Pearn, W.L. & Wu, Chien-Wei, 2007. "An effective decision making method for product acceptance," Omega, Elsevier, vol. 35(1), pages 12-21, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kuen-Suan Chen & Tsun-Hung Huang & Ruey-Chyn Tsaur & Wen-Yang Kao, 2022. "Fuzzy Evaluation Models for Accuracy and Precision Indices," Mathematics, MDPI, vol. 10(21), pages 1-12, October.
    2. Kuen-Suan Chen & Tsang-Chuan Chang, 2022. "Fuzzy testing model for the lifetime performance of products under consideration with exponential distribution," Annals of Operations Research, Springer, vol. 312(1), pages 87-98, May.
    3. Michele Scagliarini, 2022. "A sequential test and a sequential sampling plan based on the process capability index Cpmk," Computational Statistics, Springer, vol. 37(3), pages 1523-1550, July.
    4. Wu, Chien-Wei & Wang, Zih-Huei, 2024. "A cost-effective skip-lot sampling scheme using loss-based capability index for product acceptance determination," International Journal of Production Economics, Elsevier, vol. 273(C).
    5. Pérez-González, Carlos J. & Fernández, Arturo J. & Kohansal, Akram, 2020. "Efficient truncated repetitive lot inspection using Poisson defect counts and prior information," European Journal of Operational Research, Elsevier, vol. 287(3), pages 964-974.
    6. Chun-Min Yu & Tsun-Hung Huang & Kuen-Suan Chen & Tsung-Yu Huang, 2022. "Construct Six Sigma DMAIC Improvement Model for Manufacturing Process Quality of Multi-Characteristic Products," Mathematics, MDPI, vol. 10(5), pages 1-13, March.
    7. Chien-Wei Wu & Ming-Hung Shu & Pei-An Wang & Bi-Min Hsu, 2021. "Variables skip-lot sampling plans on the basis of process capability index for products with a low fraction of defectives," Computational Statistics, Springer, vol. 36(2), pages 1391-1413, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chien-Wei Wu & Zih-Huei Wang, 2017. "Developing a variables multiple dependent state sampling plan with simultaneous consideration of process yield and quality loss," International Journal of Production Research, Taylor & Francis Journals, vol. 55(8), pages 2351-2364, April.
    2. Chien-Wei Wu & Ming-Hung Shu & Pei-An Wang & Bi-Min Hsu, 2021. "Variables skip-lot sampling plans on the basis of process capability index for products with a low fraction of defectives," Computational Statistics, Springer, vol. 36(2), pages 1391-1413, June.
    3. CHEN, Piao & YE, Zhi-Sheng, 2018. "A systematic look at the gamma process capability indices," European Journal of Operational Research, Elsevier, vol. 265(2), pages 589-597.
    4. Amy H. I. Lee & Chien-Wei Wu & Yen-Wen Chen, 2016. "A modified variables repetitive group sampling plan with the consideration of preceding lots information," Annals of Operations Research, Springer, vol. 238(1), pages 355-373, March.
    5. Amy Lee & Chien-Wei Wu & Yen-Wen Chen, 2016. "A modified variables repetitive group sampling plan with the consideration of preceding lots information," Annals of Operations Research, Springer, vol. 238(1), pages 355-373, March.
    6. Wu, Chien-Wei & Wang, Zih-Huei, 2024. "A cost-effective skip-lot sampling scheme using loss-based capability index for product acceptance determination," International Journal of Production Economics, Elsevier, vol. 273(C).
    7. Wu, Chien-Wei & Aslam, Muhammad & Jun, Chi-Hyuck, 2012. "Variables sampling inspection scheme for resubmitted lots based on the process capability index Cpk," European Journal of Operational Research, Elsevier, vol. 217(3), pages 560-566.
    8. Mustapha Nourelfath & Tariq Aldowaisan & Jawad Hassan, 2016. "Evaluating Six Sigma failure rate for inverse Gaussian cycle times," International Journal of Production Research, Taylor & Francis Journals, vol. 54(20), pages 6092-6101, October.
    9. Jana Fabianová & Jaroslava Janeková & Daniela Onofrejová, 2017. "Cost Analysis of Poor Quality Using a Software Simulation," The AMFITEATRU ECONOMIC journal, Academy of Economic Studies - Bucharest, Romania, vol. 19(44), pages 181-181, February.
    10. Michele Scagliarini, 2022. "A sequential test and a sequential sampling plan based on the process capability index Cpmk," Computational Statistics, Springer, vol. 37(3), pages 1523-1550, July.
    11. Lee, Amy H.I. & Wu, Chien-Wei & Wang, To-Cheng & Kuo, Ming-Han, 2024. "Construction of acceptance sampling schemes for exponential lifetime products with progressive type II right censoring," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    12. Wu, Chien-Wei, 2012. "An efficient inspection scheme for variables based on Taguchi capability index," European Journal of Operational Research, Elsevier, vol. 223(1), pages 116-122.
    13. Bouslah, B. & Gharbi, A. & Pellerin, R., 2016. "Integrated production, sampling quality control and maintenance of deteriorating production systems with AOQL constraint," Omega, Elsevier, vol. 61(C), pages 110-126.
    14. Chien-Wei Wu & Armin Darmawan & Nien-Yun Wu, 2024. "A double sampling plan for truncated life tests under two-parameter Lindley distribution," Annals of Operations Research, Springer, vol. 340(1), pages 619-641, September.
    15. Nourelfath, Mustapha & Hassan, Jawad, 2015. "Six Sigma performance for non-normal processesAuthor-Name: Aldowaisan, Tariq," European Journal of Operational Research, Elsevier, vol. 247(3), pages 968-977.
    16. Shardrom Johnson & Jinwu Han & Yuanchen Liu & Li Chen & Xinlin Wu, 2018. "Hybrid Approach with Improved Genetic Algorithm and Simulated Annealing for Thesis Sampling," Future Internet, MDPI, vol. 10(8), pages 1-15, July.
    17. Fernández, Arturo J. & Pérez-González, Carlos J. & Aslam, Muhammad & Jun, Chi-Hyuck, 2011. "Design of progressively censored group sampling plans for Weibull distributions: An optimization problem," European Journal of Operational Research, Elsevier, vol. 211(3), pages 525-532, June.
    18. Li, Der-Chiang & Lin, Liang-Sian, 2013. "A new approach to assess product lifetime performance for small data sets," European Journal of Operational Research, Elsevier, vol. 230(2), pages 290-298.
    19. V�ctor Leiva & Carolina Marchant & Helton Saulo & Muhammad Aslam & Fernando Rojas, 2014. "Capability indices for Birnbaum-Saunders processes applied to electronic and food industries," Journal of Applied Statistics, Taylor & Francis Journals, vol. 41(9), pages 1881-1902, September.
    20. Fernández, Arturo J., 2017. "Economic lot sampling inspection from defect counts with minimum conditional value-at-risk," European Journal of Operational Research, Elsevier, vol. 258(2), pages 573-580.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:267:y:2018:i:1:p:393-398. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.