IDEAS home Printed from https://ideas.repec.org/a/bpj/ecqcon/v32y2017i2p87-98n2.html
   My bibliography  Save this article

Bootstrap Lower Confidence Limits of Superstructure Process Capability Indices for Esscher-Transformed Laplace Distribution

Author

Listed:
  • George Sebastian

    (Department of Statistics, St. Thomas College Palai, Arunapuram, Mahathma Gandhi University, Kottayam, Kerala 686574, India)

  • Sasi Ajitha

    (Department of Statistics, St. Thomas College Palai, Arunapuram, Mahathma Gandhi University, Kottayam, Kerala 686574, India)

Abstract

This article is a comparative study between the parametric asymptotic lower confidence limits and bootstrap lower confidence limits for the basic quantile based process capability indices based on the unified super-structure CNp⁢(u,v){C_{N_{p}}(u,v)} when the distribution of the quality characteristic follows an asymmetric non-normal distribution. We illustrate this method when the distribution of the quality characteristic is a member of the family of Esscher-transformed Laplace models introduced by S. George and D. George [11]. We obtain the bias corrected and accelerated (BCa) bootstrap confidence intervals of CNp⁢(u,v){C_{N_{p}}(u,v)}, which provide lower confidence intervals with coverage probability nearer to the nominal value compared to the asymptotic confidence intervals. We conclude that for asymmetric and peaked processes, the BCa confidence interval is a better alternative compared to the usual confidence intervals under the assumption that the quality characteristic follows a Gaussian type distribution. Numerical examples are given based on some real data.

Suggested Citation

  • George Sebastian & Sasi Ajitha, 2017. "Bootstrap Lower Confidence Limits of Superstructure Process Capability Indices for Esscher-Transformed Laplace Distribution," Stochastics and Quality Control, De Gruyter, vol. 32(2), pages 87-98, December.
  • Handle: RePEc:bpj:ecqcon:v:32:y:2017:i:2:p:87-98:n:2
    DOI: 10.1515/eqc-2017-0010
    as

    Download full text from publisher

    File URL: https://doi.org/10.1515/eqc-2017-0010
    Download Restriction: For access to full text, subscription to the journal or payment for the individual article is required.

    File URL: https://libkey.io/10.1515/eqc-2017-0010?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wu, Chien-Wei & Pearn, W.L. & Kotz, Samuel, 2009. "An overview of theory and practice on process capability indices for quality assurance," International Journal of Production Economics, Elsevier, vol. 117(2), pages 338-359, February.
    2. K. Kurian & Thomas Mathew & G. Sebastian, 2008. "Generalized confidence intervals for process capability indices in the one-way random model," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 67(1), pages 83-92, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Amy H. I. Lee & Chien-Wei Wu & Yen-Wen Chen, 2016. "A modified variables repetitive group sampling plan with the consideration of preceding lots information," Annals of Operations Research, Springer, vol. 238(1), pages 355-373, March.
    2. Amy Lee & Chien-Wei Wu & Yen-Wen Chen, 2016. "A modified variables repetitive group sampling plan with the consideration of preceding lots information," Annals of Operations Research, Springer, vol. 238(1), pages 355-373, March.
    3. Roy, Anindya & Bose, Arup, 2009. "Coverage of generalized confidence intervals," Journal of Multivariate Analysis, Elsevier, vol. 100(7), pages 1384-1397, August.
    4. Wu, Chien-Wei, 2012. "An efficient inspection scheme for variables based on Taguchi capability index," European Journal of Operational Research, Elsevier, vol. 223(1), pages 116-122.
    5. Chien-Wei Wu & Zih-Huei Wang, 2017. "Developing a variables multiple dependent state sampling plan with simultaneous consideration of process yield and quality loss," International Journal of Production Research, Taylor & Francis Journals, vol. 55(8), pages 2351-2364, April.
    6. Chien-Wei Wu & Ming-Hung Shu & Pei-An Wang & Bi-Min Hsu, 2021. "Variables skip-lot sampling plans on the basis of process capability index for products with a low fraction of defectives," Computational Statistics, Springer, vol. 36(2), pages 1391-1413, June.
    7. Peruchi, Rogério Santana & Balestrassi, Pedro Paulo & de Paiva, Anderson Paulo & Ferreira, João Roberto & de Santana Carmelossi, Michele, 2013. "A new multivariate gage R&R method for correlated characteristics," International Journal of Production Economics, Elsevier, vol. 144(1), pages 301-315.
    8. Wu, Chien-Wei & Aslam, Muhammad & Jun, Chi-Hyuck, 2012. "Variables sampling inspection scheme for resubmitted lots based on the process capability index Cpk," European Journal of Operational Research, Elsevier, vol. 217(3), pages 560-566.
    9. Li, Der-Chiang & Lin, Liang-Sian, 2013. "A new approach to assess product lifetime performance for small data sets," European Journal of Operational Research, Elsevier, vol. 230(2), pages 290-298.
    10. Michele Scagliarini, 2011. "Multivariate process capability using principal component analysis in the presence of measurement errors," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 95(2), pages 113-128, June.
    11. Marta Benková & Dagmar Bednárová & Gabriela Bogdanovská, 2024. "Process Capability Evaluation Using Capability Indices as a Part of Statistical Process Control," Mathematics, MDPI, vol. 12(11), pages 1-29, May.
    12. Pedro Veiga & Luis Mendes & Luis Lourenço, 2016. "A retrospective view of statistical quality control research and identification of emerging trends: a bibliometric analysis," Quality & Quantity: International Journal of Methodology, Springer, vol. 50(2), pages 673-692, March.
    13. Muhammad Aslam & Mohammed Albassam, 2019. "Inspection Plan Based on the Process Capability Index Using the Neutrosophic Statistical Method," Mathematics, MDPI, vol. 7(7), pages 1-10, July.
    14. Kuen-Suan Chen & Tsang-Chuan Chang & Chien-Che Huang, 2020. "Supplier Selection by Fuzzy Assessment and Testing for Process Quality under Consideration with Data Imprecision," Mathematics, MDPI, vol. 8(9), pages 1-14, August.
    15. Wang, Ching-Hsin & Chen, Kuen-Suan, 2020. "New process yield index of asymmetric tolerances for bootstrap method and six sigma approach," International Journal of Production Economics, Elsevier, vol. 219(C), pages 216-223.
    16. Shih-Wen Liu & Chien-Wei Wu, 2024. "An efficient partial sampling inspection for lot sentencing based on process yield," Annals of Operations Research, Springer, vol. 340(1), pages 325-344, September.
    17. Seebacher, Gottfried & Winkler, Herwig, 2015. "A capability approach to evaluate supply chain flexibility," International Journal of Production Economics, Elsevier, vol. 167(C), pages 177-186.
    18. Yang, Yefei & Lee, Peter K.C. & Cheng, T.C.E., 2016. "Continuous improvement competence, employee creativity, and new service development performance: A frontline employee perspective," International Journal of Production Economics, Elsevier, vol. 171(P2), pages 275-288.
    19. Velásquez, J.D. & Nof, S.Y., 2009. "Best-matching protocols for assembly in e-work networks," International Journal of Production Economics, Elsevier, vol. 122(1), pages 508-516, November.
    20. Madjid Tavana & Salman Nazari-Shirkouhi & Hamidreza Farzaneh Kholghabad, 2021. "An integrated quality and resilience engineering framework in healthcare with Z-number data envelopment analysis," Health Care Management Science, Springer, vol. 24(4), pages 768-785, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:ecqcon:v:32:y:2017:i:2:p:87-98:n:2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.