IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v195y2020ics0360544220301134.html
   My bibliography  Save this article

Numerical investigation on the impact of variable particle radiation properties on the heat transfer in high ash pulverized coal boiler through co-simulation

Author

Listed:
  • Laubscher, Ryno
  • Rousseau, Pieter

Abstract

Co-simulation of the high-temperature heat and mass transfer processes in coal-fired boilers using CFD together with process-level models of the water/steam circuit is a promising approach to investigate off-design conditions. In the present work, a 1D discretized two-phase model of the water flows in the evaporator and radiative superheaters was developed. This was coupled with a detailed furnace combustion and heat transfer CFD model. The coupled models are used to investigate the impact of variable particle emissivity and scattering efficiency on the evaporator and radiant superheater process conditions, including the furnace steam generation rate and final steam temperature. The results are compared with the case where the radiation properties of the particles are assumed to be constant, thereby highlighting the importance of accounting for the variations in the particle properties throughout the process. The case study boiler is that of a real 620 MWe subcritical power plant firing coal with a high ash content (41 %wt). The results show that the constant property model results in a predicted furnace heat load that is 6.5% lower than the experimental value, while the conversion-dependent model is only 0.7% lower than the experimental value.

Suggested Citation

  • Laubscher, Ryno & Rousseau, Pieter, 2020. "Numerical investigation on the impact of variable particle radiation properties on the heat transfer in high ash pulverized coal boiler through co-simulation," Energy, Elsevier, vol. 195(C).
  • Handle: RePEc:eee:energy:v:195:y:2020:i:c:s0360544220301134
    DOI: 10.1016/j.energy.2020.117006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544220301134
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2020.117006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yin, Chungen, 2015. "On gas and particle radiation in pulverized fuel combustion furnaces," Applied Energy, Elsevier, vol. 157(C), pages 554-561.
    2. Yin, Chungen & Yan, Jinyue, 2016. "Oxy-fuel combustion of pulverized fuels: Combustion fundamentals and modeling," Applied Energy, Elsevier, vol. 162(C), pages 742-762.
    3. Đugum, Adnan & Hanjalić, Kemal, 2019. "Numerical simulation of coal-air mixture flow in a real double-swirl burner and implications on combustion anomalies in a utility boiler," Energy, Elsevier, vol. 170(C), pages 942-953.
    4. Trojan, Marcin, 2019. "Modeling of a steam boiler operation using the boiler nonlinear mathematical model," Energy, Elsevier, vol. 175(C), pages 1194-1208.
    5. Li, Zixiang & Miao, Zhengqing & Zhou, Yan & Wen, Shurong & Li, Jiangtao, 2018. "Influence of increased primary air ratio on boiler performance in a 660 MW brown coal boiler," Energy, Elsevier, vol. 152(C), pages 804-817.
    6. Modliński, Norbert & Madejski, Pawel & Janda, Tomasz & Szczepanek, Krzysztof & Kordylewski, Wlodzimierz, 2015. "A validation of computational fluid dynamics temperature distribution prediction in a pulverized coal boiler with acoustic temperature measurement," Energy, Elsevier, vol. 92(P1), pages 77-86.
    7. Yang, Xin & Clements, Alastair & Szuhánszki, János & Huang, Xiaohong & Farias Moguel, Oscar & Li, Jia & Gibbins, Jon & Liu, Zhaohui & Zheng, Chuguang & Ingham, Derek & Ma, Lin & Nimmo, Bill & Pourkash, 2018. "Prediction of the radiative heat transfer in small and large scale oxy-coal furnaces," Applied Energy, Elsevier, vol. 211(C), pages 523-537.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hyunbin Jo & Jongkeun Park & Woosuk Kang & Junseok Hong & Sungmin Yoon & Howon Ra & Changkook Ryu, 2021. "Influence of Uneven Secondary Air Supply and Burner Tilt on Flow Pattern, Heat Transfer, and NOx Emissions in a 500 MWe Tangential-Firing Coal Boiler," Energies, MDPI, vol. 14(24), pages 1-18, December.
    2. Xin Guo & Guangbo Zhao & Zhecheng Zhang & Dongdong Feng & Yongjie Wang & Zhengshun Zhang, 2023. "A Real-Time Calculation Method to Improve Boiler Safety in Deep Peak Shaving Cases," Energies, MDPI, vol. 16(13), pages 1-19, June.
    3. Pieter Rousseau & Ryno Laubscher & Brad Travis Rawlins, 2023. "Heat Transfer Analysis Using Thermofluid Network Models for Industrial Biomass and Utility Scale Coal-Fired Boilers," Energies, MDPI, vol. 16(4), pages 1-49, February.
    4. Pei Li & Ting Bao & Jian Guan & Zifu Shi & Zengxiao Xie & Yonggang Zhou & Wei Zhong, 2023. "Computational Analysis of Tube Wall Temperature of Superheater in 1000 MW Ultra-Supercritical Boiler Based on the Inlet Thermal Deviation," Energies, MDPI, vol. 16(3), pages 1-15, February.
    5. Orumbayev, Rakhimzhan K. & Bakhtiyar, Balzhan T. & Umyshev, Dias R. & Kumargazina, Madina B. & Otynchiyeva, Marzhan T. & Akimbek, Gulmira A., 2021. "Experimental study of ash wear of heat exchange surfaces of the boiler," Energy, Elsevier, vol. 215(PA).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bordbar, Hadi & Maximov, Alexander & Hyppänen, Timo, 2019. "Improved banded method for spectral thermal radiation in participating media with spectrally dependent wall emittance," Applied Energy, Elsevier, vol. 235(C), pages 1090-1105.
    2. Guo, Junjun & Liu, Zhaohui & Hu, Fan & Li, Pengfei & Luo, Wei & Huang, Xiaohong, 2018. "A compatible configuration strategy for burner streams in a 200 MWe tangentially fired oxy-fuel combustion boiler," Applied Energy, Elsevier, vol. 220(C), pages 59-69.
    3. Ma, Lun & Fang, Qingyan & Yin, Chungen & Wang, Huajian & Zhang, Cheng & Chen, Gang, 2019. "A novel corner-fired boiler system of improved efficiency and coal flexibility and reduced NOx emissions," Applied Energy, Elsevier, vol. 238(C), pages 453-465.
    4. Mansir, Ibrahim B. & Ben-Mansour, Rached & Habib, Mohamed A., 2018. "Oxy-fuel combustion in a two-pass oxygen transport reactor for fire tube boiler application," Applied Energy, Elsevier, vol. 229(C), pages 828-840.
    5. Modlinski, Norbert & Hardy, Tomasz, 2017. "Development of high-temperature corrosion risk monitoring system in pulverized coal boilers based on reducing conditions identification and CFD simulations," Applied Energy, Elsevier, vol. 204(C), pages 1124-1137.
    6. Jin, Donghao & Yan, Jingwen & Liu, Xin & Zhang, Chaoqun & Wang, Heyang, 2023. "Prediction of tube temperature distribution of boiler platen superheater by a coupled combustion and hydrodynamic model," Energy, Elsevier, vol. 279(C).
    7. Yang, Xin & Clements, Alastair & Szuhánszki, János & Huang, Xiaohong & Farias Moguel, Oscar & Li, Jia & Gibbins, Jon & Liu, Zhaohui & Zheng, Chuguang & Ingham, Derek & Ma, Lin & Nimmo, Bill & Pourkash, 2018. "Prediction of the radiative heat transfer in small and large scale oxy-coal furnaces," Applied Energy, Elsevier, vol. 211(C), pages 523-537.
    8. Gaber, Christian & Schluckner, Christoph & Wachter, Philipp & Demuth, Martin & Hochenauer, Christoph, 2021. "Experimental study on the influence of the nitrogen concentration in the oxidizer on NOx and CO emissions during the oxy-fuel combustion of natural gas," Energy, Elsevier, vol. 214(C).
    9. Heydar Maddah & Milad Sadeghzadeh & Mohammad Hossein Ahmadi & Ravinder Kumar & Shahaboddin Shamshirband, 2019. "Modeling and Efficiency Optimization of Steam Boilers by Employing Neural Networks and Response-Surface Method (RSM)," Mathematics, MDPI, vol. 7(7), pages 1-17, July.
    10. Wang, Chaoyang & Liu, Ming & Zhao, Yongliang & Chong, Daotong & Yan, Junjie, 2020. "Entropy generation distribution characteristics of a supercritical boiler superheater during transient processes," Energy, Elsevier, vol. 201(C).
    11. Pieter Rousseau & Ryno Laubscher & Brad Travis Rawlins, 2023. "Heat Transfer Analysis Using Thermofluid Network Models for Industrial Biomass and Utility Scale Coal-Fired Boilers," Energies, MDPI, vol. 16(4), pages 1-49, February.
    12. Chen, Xi & Zhong, Wenqi & Li, Tianyu, 2023. "Fast prediction of temperature and chemical species distributions in pulverized coal boiler using POD reduced-order modeling for CFD," Energy, Elsevier, vol. 276(C).
    13. Choi, Minsung & Park, Yeseul & Li, Xinzhuo & Kim, Kibeom & Sung, Yonmo & Hwang, Taegam & Choi, Gyungmin, 2021. "Numerical evaluation of pulverized coal swirling flames and NOx emissions in a coal-fired boiler: Effects of co- and counter-swirling flames and coal injection modes," Energy, Elsevier, vol. 217(C).
    14. Yan, Rong & Chen, Zhichao & Zheng, Yu & Yuan, Linxuan & Zeng, Lingyan & Li, Zhengqi, 2021. "Influence of inner and outer secondary air ratio on flow and combustion characteristics of a swirl burner in a 29 MW pulverized coal boiler," Energy, Elsevier, vol. 237(C).
    15. Mikulčić, Hrvoje & von Berg, Eberhard & Vujanović, Milan & Wang, Xuebin & Tan, Houzhang & Duić, Neven, 2016. "Numerical evaluation of different pulverized coal and solid recovered fuel co-firing modes inside a large-scale cement calciner," Applied Energy, Elsevier, vol. 184(C), pages 1292-1305.
    16. Zhang, Xin & Chen, Zhichao & Hou, Jian & Liu, Zheng & Zeng, Lingyan & Li, Zhengqi, 2022. "Evaluation of wide-range coal combustion performance of a novel down-fired combustion technology based on gas–solid two-phase flow characteristics," Energy, Elsevier, vol. 248(C).
    17. Li, Xinli & Wang, Yingnan & Zhu, Yun & Yang, Guotian & Liu, He, 2021. "Temperature prediction of combustion level of ultra-supercritical unit through data mining and modelling," Energy, Elsevier, vol. 231(C).
    18. Zhao, Jingyu & Deng, Jun & Wang, Tao & Song, Jiajia & Zhang, Yanni & Shu, Chi-Min & Zeng, Qiang, 2019. "Assessing the effectiveness of a high-temperature-programmed experimental system for simulating the spontaneous combustion properties of bituminous coal through thermokinetic analysis of four oxidatio," Energy, Elsevier, vol. 169(C), pages 587-596.
    19. Díez, Luis I. & García-Mariaca, Alexander & Canalís, Paula & Llera, Eva, 2023. "Oxy-combustion characteristics of torrefied biomass and blends under O2/N2, O2/CO2 and O2/CO2/H2O atmospheres," Energy, Elsevier, vol. 284(C).
    20. Li, Shiyuan & Xu, Mingxin & Jia, Lufei & Tan, Li & Lu, Qinggang, 2016. "Influence of operating parameters on N2O emission in O2/CO2 combustion with high oxygen concentration in circulating fluidized bed," Applied Energy, Elsevier, vol. 173(C), pages 197-209.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:195:y:2020:i:c:s0360544220301134. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.