IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v7y2019i12p1198-d295136.html
   My bibliography  Save this article

Comparative Analysis of Machine Learning Models for Prediction of Remaining Service Life of Flexible Pavement

Author

Listed:
  • Narjes Nabipour

    (Institute of Research and Development, Duy Tan University, Da Nang 550000, Vietnam)

  • Nader Karballaeezadeh

    (Department of Civil Engineering, Shahrood University of Technology, Shahrood 3619995161, Iran)

  • Adrienn Dineva

    (Institute of Automation, Kalman Kando Faculty of Electrical Engineering, Obuda University, 1034 Budapest, Hungary)

  • Amir Mosavi

    (Institute of Automation, Kalman Kando Faculty of Electrical Engineering, Obuda University, 1034 Budapest, Hungary
    Queensland University of Technology, 130 Victoria Park Road, Queensland 4059, Australia)

  • Danial Mohammadzadeh S.

    (Department of Civil Engineering, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran
    Department of Elite Relations with Industries, Khorasan Construction Engineering Organization, Mashhad 9185816744, Iran)

  • Shahaboddin Shamshirband

    (Department for Management of Science and Technology Development, Ton Duc Thang University, Ho Chi Minh City, Vietnam
    Faculty of Information Technology, Ton Duc Thang University, Ho Chi Minh City, Vietnam)

Abstract

Prediction of the remaining service life (RSL) of pavement is a challenging task for road maintenance and transportation engineering. The prediction of the RSL estimates the time that a major repair or reconstruction becomes essential. The conventional approach to predict RSL involves using non-destructive tests. These tests, in addition to being costly, interfere with traffic flow and compromise operational safety. In this paper, surface distresses of pavement are used to estimate the RSL to address the aforementioned challenges. To implement the proposed theory, 105 flexible pavement segments are considered. For each pavement segment, the type, severity, and extent of surface damage and the pavement condition index (PCI) were determined. The pavement RSL was then estimated using non-destructive tests include falling weight deflectometer (FWD) and ground-penetrating radar (GPR). After completing the dataset, the modeling was conducted to predict RSL using three techniques include support vector regression (SVR), support vector regression optimized by the fruit fly optimization algorithm (SVR-FOA), and gene expression programming (GEP). All three techniques estimated the RSL of the pavement by selecting the PCI as input. The correlation coefficient (CC), Nash–Sutcliffe efficiency (NSE), scattered index (SI), and Willmott’s index of agreement (WI) criteria were used to examine the performance of the three techniques adopted in this study. In the end, it was found that GEP with values of 0.874, 0.598, 0.601, and 0.807 for CC, SI, NSE, and WI criteria, respectively, had the highest accuracy in predicting the RSL of pavement.

Suggested Citation

  • Narjes Nabipour & Nader Karballaeezadeh & Adrienn Dineva & Amir Mosavi & Danial Mohammadzadeh S. & Shahaboddin Shamshirband, 2019. "Comparative Analysis of Machine Learning Models for Prediction of Remaining Service Life of Flexible Pavement," Mathematics, MDPI, vol. 7(12), pages 1-22, December.
  • Handle: RePEc:gam:jmathe:v:7:y:2019:i:12:p:1198-:d:295136
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/7/12/1198/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/7/12/1198/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yassin, Mohamed A. & Alazba, A.A. & Mattar, Mohamed A., 2016. "Artificial neural networks versus gene expression programming for estimating reference evapotranspiration in arid climate," Agricultural Water Management, Elsevier, vol. 163(C), pages 110-124.
    2. Majid Dehghani & Hossein Riahi-Madvar & Farhad Hooshyaripor & Amir Mosavi & Shahaboddin Shamshirband & Edmundas Kazimieras Zavadskas & Kwok-wing Chau, 2019. "Prediction of Hydropower Generation Using Grey Wolf Optimization Adaptive Neuro-Fuzzy Inference System," Energies, MDPI, vol. 12(2), pages 1-20, January.
    3. Prozzi, Jorge A, 2001. "Modeling Pavement Performance by Combining Field and Experimental Data," University of California Transportation Center, Working Papers qt1gx2425x, University of California Transportation Center.
    4. Chuncai Xiao & Kuangrong Hao & Yongsheng Ding, 2015. "An Improved Fruit Fly Optimization Algorithm Inspired from Cell Communication Mechanism," Mathematical Problems in Engineering, Hindawi, vol. 2015, pages 1-15, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jiaxin Yu & Jun Wang, 2020. "Optimization Design of a Rain-Power Utilization System Based on a Siphon and Its Application in a High-Rise Building," Energies, MDPI, vol. 13(18), pages 1-18, September.
    2. Imran Ali Lakhiar & Haofang Yan & Chuan Zhang & Guoqing Wang & Bin He & Beibei Hao & Yujing Han & Biyu Wang & Rongxuan Bao & Tabinda Naz Syed & Junaid Nawaz Chauhdary & Md. Rakibuzzaman, 2024. "A Review of Precision Irrigation Water-Saving Technology under Changing Climate for Enhancing Water Use Efficiency, Crop Yield, and Environmental Footprints," Agriculture, MDPI, vol. 14(7), pages 1-40, July.
    3. Kaloop, Mosbeh R. & Bardhan, Abidhan & Kardani, Navid & Samui, Pijush & Hu, Jong Wan & Ramzy, Ahmed, 2021. "Novel application of adaptive swarm intelligence techniques coupled with adaptive network-based fuzzy inference system in predicting photovoltaic power," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    4. Yi Liu & Zhiqiang Jiang & Zhongkai Feng & Yuyun Chen & Hairong Zhang & Ping Chen, 2019. "Optimization of Energy Storage Operation Chart of Cascade Reservoirs with Multi-Year Regulating Reservoir," Energies, MDPI, vol. 12(20), pages 1-20, October.
    5. Marcos Geraldo Gomes & Victor Hugo Carlquist da Silva & Luiz Fernando Rodrigues Pinto & Plinio Centoamore & Salvatore Digiesi & Francesco Facchini & Geraldo Cardoso de Oliveira Neto, 2020. "Economic, Environmental and Social Gains of the Implementation of Artificial Intelligence at Dam Operations toward Industry 4.0 Principles," Sustainability, MDPI, vol. 12(9), pages 1-19, April.
    6. Shahaboddin Shamshirband & Masoud Hadipoor & Alireza Baghban & Amir Mosavi & Jozsef Bukor & Annamária R. Várkonyi-Kóczy, 2019. "Developing an ANFIS-PSO Model to Predict Mercury Emissions in Combustion Flue Gases," Mathematics, MDPI, vol. 7(10), pages 1-16, October.
    7. Saeed Nosratabadi & Amir Mosavi & Shahaboddin Shamshirband & Edmundas Kazimieras Zavadskas & Andry Rakotonirainy & Kwok Wing Chau, 2019. "Sustainable Business Models: A Review," Sustainability, MDPI, vol. 11(6), pages 1-30, March.
    8. Saeed Nosratabadi & Amir Mosavi & Ramin Keivani & Sina Ardabili & Farshid Aram, 2020. "State of the Art Survey of Deep Learning and Machine Learning Models for Smart Cities and Urban Sustainability," Papers 2010.02670, arXiv.org.
    9. Nosratabadi, Saeed & Mosavi, Amir & Shamshirband, Shahaboddin & Zavadskas, Edmundas Kazimieras & Rakotonirainy, Andry & Chau, Kwok Wing, 2020. "Sustainable Business Models: A Review," OSF Preprints u4xw3, Center for Open Science.
    10. Mattar, Mohamed A., 2018. "Using gene expression programming in monthly reference evapotranspiration modeling: A case study in Egypt," Agricultural Water Management, Elsevier, vol. 198(C), pages 28-38.
    11. Mohammad Hijji & Tzu-Chia Chen & Muhammad Ayaz & Ali S. Abosinnee & Iskandar Muda & Yury Razoumny & Javad Hatamiafkoueieh, 2023. "Optimization of State of the Art Fuzzy-Based Machine Learning Techniques for Total Dissolved Solids Prediction," Sustainability, MDPI, vol. 15(8), pages 1-23, April.
    12. Heidarpanah, Mohammadreza & Hooshyaripor, Farhad & Fazeli, Meysam, 2023. "Daily electricity price forecasting using artificial intelligence models in the Iranian electricity market," Energy, Elsevier, vol. 263(PE).
    13. Milan Gocić & Mohammad Arab Amiri, 2021. "Reference Evapotranspiration Prediction Using Neural Networks and Optimum Time Lags," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(6), pages 1913-1926, April.
    14. Zeng, Bo & He, Chengxiang & Mao, Cuiwei & Wu, You, 2023. "Forecasting China's hydropower generation capacity using a novel grey combination optimization model," Energy, Elsevier, vol. 262(PA).
    15. Zhang, Lei & Zhao, Xin & Zhu, Ge & He, Jun & Chen, Jian & Chen, Zhicheng & Traore, Seydou & Liu, Junguo & Singh, Vijay P., 2023. "Short-term daily reference evapotranspiration forecasting using temperature-based deep learning models in different climate zones in China," Agricultural Water Management, Elsevier, vol. 289(C).
    16. Fan, Junliang & Ma, Xin & Wu, Lifeng & Zhang, Fucang & Yu, Xiang & Zeng, Wenzhi, 2019. "Light Gradient Boosting Machine: An efficient soft computing model for estimating daily reference evapotranspiration with local and external meteorological data," Agricultural Water Management, Elsevier, vol. 225(C).
    17. Bhowmik, Mrinal & Muthukumar, P. & Anandalakshmi, R., 2019. "Experimental based multilayer perceptron approach for prediction of evacuated solar collector performance in humid subtropical regions," Renewable Energy, Elsevier, vol. 143(C), pages 1566-1580.
    18. Nosratabadi, Saeed & Mosavi, Amir & Shamshirband, Shahaboddin & Zavadskas, Edmundas Kazimieras & Rakotonirainy, Andry & Chau, Kwok Wing, 2020. "Sustainable Business Models: A Review," OSF Preprints ts54m, Center for Open Science.
    19. Yamaç, Sevim Seda & Todorovic, Mladen, 2020. "Estimation of daily potato crop evapotranspiration using three different machine learning algorithms and four scenarios of available meteorological data," Agricultural Water Management, Elsevier, vol. 228(C).
    20. Amin, Shohel & Tamima, Umma & Amador-Jiménez, Luis E., 2019. "Optimal pavement management: Resilient roads in support of emergency response of cyclone affected coastal areas," Transportation Research Part A: Policy and Practice, Elsevier, vol. 119(C), pages 45-61.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:7:y:2019:i:12:p:1198-:d:295136. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.