IDEAS home Printed from https://ideas.repec.org/a/hin/jnlmpe/492195.html
   My bibliography  Save this article

An Improved Fruit Fly Optimization Algorithm Inspired from Cell Communication Mechanism

Author

Listed:
  • Chuncai Xiao
  • Kuangrong Hao
  • Yongsheng Ding

Abstract

Fruit fly optimization algorithm (FOA) invented recently is a new swarm intelligence method based on fruit fly’s foraging behaviors and has been shown to be competitive with existing evolutionary algorithms, such as particle swarm optimization (PSO) algorithm. However, there are still some disadvantages in the FOA, such as low convergence precision, easily trapped in a local optimum value at the later evolution stage. This paper presents an improved FOA based on the cell communication mechanism (CFOA), by considering the information of the global worst, mean, and best solutions into the search strategy to improve the exploitation. The results from a set of numerical benchmark functions show that the CFOA outperforms the FOA and the PSO in most of the experiments. Further, the CFOA is applied to optimize the controller for preoxidation furnaces in carbon fibers production. Simulation results demonstrate the effectiveness of the CFOA.

Suggested Citation

  • Chuncai Xiao & Kuangrong Hao & Yongsheng Ding, 2015. "An Improved Fruit Fly Optimization Algorithm Inspired from Cell Communication Mechanism," Mathematical Problems in Engineering, Hindawi, vol. 2015, pages 1-15, March.
  • Handle: RePEc:hin:jnlmpe:492195
    DOI: 10.1155/2015/492195
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/MPE/2015/492195.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/MPE/2015/492195.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2015/492195?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zulfiqar Ahmad & Hua Zhong & Amir Mosavi & Mehreen Sadiq & Hira Saleem & Azeem Khalid & Shahid Mahmood & Narjes Nabipour, 2020. "Machine Learning Modeling of Aerobic Biodegradation for Azo Dyes and Hexavalent Chromium," Mathematics, MDPI, vol. 8(6), pages 1-17, June.
    2. Narjes Nabipour & Nader Karballaeezadeh & Adrienn Dineva & Amir Mosavi & Danial Mohammadzadeh S. & Shahaboddin Shamshirband, 2019. "Comparative Analysis of Machine Learning Models for Prediction of Remaining Service Life of Flexible Pavement," Mathematics, MDPI, vol. 7(12), pages 1-22, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:492195. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.