IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v7y2019i11p1025-d282073.html
   My bibliography  Save this article

Impulsive Delayed Lasota–Wazewska Fractional Models: Global Stability of Integral Manifolds

Author

Listed:
  • Gani Stamov

    (Department of Mathematics, Technical University of Sofia, 8800 Sliven, Bulgaria
    Department of Mathematics, University of Texas at San Antonio, San Antonio, TX 78249, USA
    Current address: Affiliation 2.)

  • Ivanka Stamova

    (Department of Mathematics, University of Texas at San Antonio, San Antonio, TX 78249, USA)

Abstract

In this paper we deal with the problems of existence, boundedness and global stability of integral manifolds for impulsive Lasota–Wazewska equations of fractional order with time-varying delays and variable impulsive perturbations. The main results are obtained by employing the fractional Lyapunov method and comparison principle for impulsive fractional differential equations. With this research we generalize and improve some existing results on fractional-order models of cell production systems. These models and applied technique can be used in the investigation of integral manifolds in a wide range of biological and chemical processes.

Suggested Citation

  • Gani Stamov & Ivanka Stamova, 2019. "Impulsive Delayed Lasota–Wazewska Fractional Models: Global Stability of Integral Manifolds," Mathematics, MDPI, vol. 7(11), pages 1-15, October.
  • Handle: RePEc:gam:jmathe:v:7:y:2019:i:11:p:1025-:d:282073
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/7/11/1025/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/7/11/1025/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hristo Kiskinov & Andrey Zahariev, 2015. "Nonlinear Impulsive Differential Equations with Weighted Exponential or Ordinary Dichotomous Linear Part in a Banach Space," International Journal of Differential Equations, Hindawi, vol. 2015, pages 1-7, September.
    2. Yang, Xujun & Li, Chuandong & Huang, Tingwen & Song, Qiankun, 2017. "Mittag–Leffler stability analysis of nonlinear fractional-order systems with impulses," Applied Mathematics and Computation, Elsevier, vol. 293(C), pages 416-422.
    3. Škovránek, Tomáš & Podlubny, Igor & Petráš, Ivo, 2012. "Modeling of the national economies in state-space: A fractional calculus approach," Economic Modelling, Elsevier, vol. 29(4), pages 1322-1327.
    4. Li, Xiaodi & Yang, Xueyan & Huang, Tingwen, 2019. "Persistence of delayed cooperative models: Impulsive control method," Applied Mathematics and Computation, Elsevier, vol. 342(C), pages 130-146.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gani Stamov & Ivanka Stamova & Stanislav Simeonov & Ivan Torlakov, 2020. "On the Stability with Respect to H-Manifolds for Cohen–Grossberg-Type Bidirectional Associative Memory Neural Networks with Variable Impulsive Perturbations and Time-Varying Delays," Mathematics, MDPI, vol. 8(3), pages 1-14, March.
    2. Zhao, Yongshun & Li, Xiaodi & Cao, Jinde, 2020. "Global exponential stability for impulsive systems with infinite distributed delay based on flexible impulse frequency," Applied Mathematics and Computation, Elsevier, vol. 386(C).
    3. Ertuğrul Karaçuha & Vasil Tabatadze & Kamil Karaçuha & Nisa Özge Önal & Esra Ergün, 2020. "Deep Assessment Methodology Using Fractional Calculus on Mathematical Modeling and Prediction of Gross Domestic Product per Capita of Countries," Mathematics, MDPI, vol. 8(4), pages 1-18, April.
    4. Li, Xing-Yu & Wu, Kai-Ning & Liu, Xiao-Zhen, 2023. "Mittag–Leffler stabilization for short memory fractional reaction-diffusion systems via intermittent boundary control," Applied Mathematics and Computation, Elsevier, vol. 449(C).
    5. Zhao, Shiyi & Pan, Yingnan & Du, Peihao & Liang, Hongjing, 2020. "Adaptive control for non-affine nonlinear systems with input saturation and output dead zone," Applied Mathematics and Computation, Elsevier, vol. 386(C).
    6. Liu, Haoliang & Zhang, Taixiang & Li, Xiaodi, 2021. "Event-triggered control for nonlinear systems with impulse effects," Chaos, Solitons & Fractals, Elsevier, vol. 153(P1).
    7. Bei Zhang & Yonghui Xia & Lijuan Zhu & Haidong Liu & Longfei Gu, 2019. "Global Stability of Fractional Order Coupled Systems with Impulses via a Graphic Approach," Mathematics, MDPI, vol. 7(8), pages 1-10, August.
    8. Syed Ali, M. & Narayanan, Govindasamy & Shekher, Vineet & Alsulami, Hamed & Saeed, Tareq, 2020. "Dynamic stability analysis of stochastic fractional-order memristor fuzzy BAM neural networks with delay and leakage terms," Applied Mathematics and Computation, Elsevier, vol. 369(C).
    9. Ali Balcı, Mehmet, 2017. "Time fractional capital-induced labor migration model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 477(C), pages 91-98.
    10. Duc, Tran Minh & Van Hoa, Ngo, 2021. "Stabilization of impulsive fractional-order dynamic systems involving the Caputo fractional derivative of variable-order via a linear feedback controller," Chaos, Solitons & Fractals, Elsevier, vol. 153(P2).
    11. Michal Fečkan & JinRong Wang, 2017. "Mixed Order Fractional Differential Equations," Mathematics, MDPI, vol. 5(4), pages 1-9, November.
    12. Yuan Tian & Chuandong Li & Xujun Yang & Yiyan Han, 2019. "Coordinated Tracking for Nonlinear Multiagent Systems under Variable-Time Impulsive Control," Complexity, Hindawi, vol. 2019, pages 1-10, May.
    13. Gani Stamov & Ivanka Stamova & George Venkov & Trayan Stamov & Cvetelina Spirova, 2020. "Global Stability of Integral Manifolds for Reaction–Diffusion Delayed Neural Networks of Cohen–Grossberg-Type under Variable Impulsive Perturbations," Mathematics, MDPI, vol. 8(7), pages 1-18, July.
    14. Watcharin Chartbupapan & Ovidiu Bagdasar & Kanit Mukdasai, 2020. "A Novel Delay-Dependent Asymptotic Stability Conditions for Differential and Riemann-Liouville Fractional Differential Neutral Systems with Constant Delays and Nonlinear Perturbation," Mathematics, MDPI, vol. 8(1), pages 1-10, January.
    15. Hu, Jingting & Sui, Guixia & Li, Xiaodi, 2020. "Fixed-time synchronization of complex networks with time-varying delays," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    16. Lu, Qinyun & Zhu, Yuanguo, 2021. "LQ optimal control of fractional-order discrete-time uncertain systems," Chaos, Solitons & Fractals, Elsevier, vol. 147(C).
    17. Suriguga, Ma & Kao, Yonggui & Hyder, Abd-Allah, 2020. "Uniform stability of delayed impulsive reaction–diffusion systems," Applied Mathematics and Computation, Elsevier, vol. 372(C).
    18. Fan, Hongguang & Shi, Kaibo & Zhao, Yi, 2022. "Pinning impulsive cluster synchronization of uncertain complex dynamical networks with multiple time-varying delays and impulsive effects," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 587(C).
    19. Huang, Conggui & Wang, Fei & Zheng, Zhaowen, 2021. "Exponential stability for nonlinear fractional order sampled-data control systems with its applications," Chaos, Solitons & Fractals, Elsevier, vol. 151(C).
    20. Valentina V. Tarasova & Vasily E. Tarasov, 2017. "Logistic map with memory from economic model," Papers 1712.09092, arXiv.org.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:7:y:2019:i:11:p:1025-:d:282073. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.