IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v13y2025i5p778-d1600631.html
   My bibliography  Save this article

Dynamic Modeling of Limit Order Book and Market Maker Strategy Optimization Based on Markov Queue Theory

Author

Listed:
  • Fei Xie

    (School of Finance, Shanghai University of Finance and Economics, Shanghai 200090, China
    Shanghai Financial Intelligent Engineering Technology Research Center, Shanghai University of Finance and Economics, Shanghai 200090, China
    MoE Key Laboratory of Interdisciplinary Research of Computation and Economics, Shanghai University of Finance and Economics, Shanghai 200433, China
    These authors contributed equally to this work.)

  • Yang Liu

    (School of Mathematics, Shanghai University of Finance and Economics, Shanghai 200090, China
    These authors contributed equally to this work.)

  • Changlong Hu

    (School of Statistics and Data Science, Shanghai University of Finance and Economics, Shanghai 200090, China)

  • Shenbao Liang

    (School of Law, Shanghai University of Finance and Economics, Shanghai 200433, China)

Abstract

In recent years, high-frequency trading has become increasingly popular in financial markets, making the dynamic modeling of the limit book and the optimization of market maker strategies become key topics. However, existing studies often lacked detailed descriptions of order books and failed to fully characterize the optimal decisions of market makers in complex market environments, especially in China’s A-share market. Based on Markov queue theory, this paper proposes the dynamic model of the limit order and the optimal strategy of the market maker. The model uses a state transition probability matrix to refine the market diffusion state, order generation, and trading process and incorporates indicators such as optimal quote deviation and restricted order trading probability. Then, the optimal control model is constructed and the reference strategy is derived using the Hamilton–Jacobi–Bellman (HJB) equation. Then, the key parameters are estimated using the high-frequency data of Ping An Bank for a single trading day. In the empirical aspect, the six-month high-frequency trading data of 114 representative stocks in different market states such as the bull market and bear market in China’s A-share market were selected for strategy verification. The results showed that the proposed strategy had robust returns and stable profits in the bull market and that frequent capture of market fluctuations in the bear market can earn relatively high returns while maintaining 50% of the order coverage rate and 66% of the stable order winning rate. Our study used Markov queuing theory to describe the state and price dynamics of the limit order book in detail and used optimization methods to construct and solve the optimal market maker strategy. The empirical aspect broadens the empirical scope of market maker strategies in the Chinese market and studies the stability and effectiveness of market makers in different market states.

Suggested Citation

  • Fei Xie & Yang Liu & Changlong Hu & Shenbao Liang, 2025. "Dynamic Modeling of Limit Order Book and Market Maker Strategy Optimization Based on Markov Queue Theory," Mathematics, MDPI, vol. 13(5), pages 1-28, February.
  • Handle: RePEc:gam:jmathe:v:13:y:2025:i:5:p:778-:d:1600631
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/13/5/778/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/13/5/778/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Erhan Bayraktar & Michael Ludkovski, 2014. "Liquidation In Limit Order Books With Controlled Intensity," Mathematical Finance, Wiley Blackwell, vol. 24(4), pages 627-650, October.
    2. Burton Hollifield & Robert A. Miller & Patrik Sandås, 2004. "Empirical Analysis of Limit Order Markets," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 71(4), pages 1027-1063.
    3. Rama Cont & Sasha Stoikov & Rishi Talreja, 2010. "A Stochastic Model for Order Book Dynamics," Operations Research, INFORMS, vol. 58(3), pages 549-563, June.
    4. Biais, Bruno & Hillion, Pierre & Spatt, Chester, 1995. "An Empirical Analysis of the Limit Order Book and the Order Flow in the Paris Bourse," Journal of Finance, American Finance Association, vol. 50(5), pages 1655-1689, December.
    5. Fabien Guilbaud & Huyên Pham, 2013. "Optimal high-frequency trading with limit and market orders," Quantitative Finance, Taylor & Francis Journals, vol. 13(1), pages 79-94, January.
    6. E. Bacry & S. Delattre & M. Hoffmann & J. F. Muzy, 2013. "Modelling microstructure noise with mutually exciting point processes," Quantitative Finance, Taylor & Francis Journals, vol. 13(1), pages 65-77, January.
    7. Marco Avellaneda & Sasha Stoikov, 2008. "High-frequency trading in a limit order book," Quantitative Finance, Taylor & Francis Journals, vol. 8(3), pages 217-224.
    8. Yacine Aït-Sahalia, 2005. "How Often to Sample a Continuous-Time Process in the Presence of Market Microstructure Noise," The Review of Financial Studies, Society for Financial Studies, vol. 18(2), pages 351-416.
    9. Ho, Thomas & Stoll, Hans R., 1981. "Optimal dealer pricing under transactions and return uncertainty," Journal of Financial Economics, Elsevier, vol. 9(1), pages 47-73, March.
    10. Luc, BAUWENS & Nikolaus, HAUTSCH, 2006. "Modelling Financial High Frequency Data Using Point Processes," Discussion Papers (ECON - Département des Sciences Economiques) 2006039, Université catholique de Louvain, Département des Sciences Economiques.
    11. Harris, Lawrence E. & Panchapagesan, Venkatesh, 2005. "The information content of the limit order book: evidence from NYSE specialist trading decisions," Journal of Financial Markets, Elsevier, vol. 8(1), pages 25-67, February.
    12. Robert F. Engle & Jeffrey R. Russell, 1998. "Autoregressive Conditional Duration: A New Model for Irregularly Spaced Transaction Data," Econometrica, Econometric Society, vol. 66(5), pages 1127-1162, September.
    13. Sasha Stoikov & Mehmet Sağlam, 2009. "Option market making under inventory risk," Review of Derivatives Research, Springer, vol. 12(1), pages 55-79, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. repec:hal:wpaper:hal-00777941 is not listed on IDEAS
    2. Pietro Fodra & Huyen Pham, 2013. "High frequency trading in a Markov renewal model," Working Papers hal-00867113, HAL.
    3. Ban Zheng & Franc{c}ois Roueff & Fr'ed'eric Abergel, 2013. "Ergodicity and scaling limit of a constrained multivariate Hawkes process," Papers 1301.5007, arXiv.org, revised Feb 2014.
    4. Pietro Fodra & Huy^en Pham, 2013. "High frequency trading and asymptotics for small risk aversion in a Markov renewal model," Papers 1310.1756, arXiv.org, revised Jan 2015.
    5. Philippe Bergault & David Evangelista & Olivier Gu'eant & Douglas Vieira, 2018. "Closed-form approximations in multi-asset market making," Papers 1810.04383, arXiv.org, revised Sep 2022.
    6. Baron Law & Frederi Viens, 2019. "Market Making under a Weakly Consistent Limit Order Book Model," Papers 1903.07222, arXiv.org, revised Jan 2020.
    7. Ban Zheng & François Roueff & Frédéric Abergel, 2014. "Ergodicity and scaling limit of a constrained multivariate Hawkes process," Post-Print hal-00777941, HAL.
    8. Olivier Guéant, 2016. "The Financial Mathematics of Market Liquidity: From Optimal Execution to Market Making," Post-Print hal-01393136, HAL.
    9. Martin D. Gould & Mason A. Porter & Stacy Williams & Mark McDonald & Daniel J. Fenn & Sam D. Howison, 2010. "Limit Order Books," Papers 1012.0349, arXiv.org, revised Apr 2013.
    10. Bastien Baldacci & Jerome Benveniste & Gordon Ritter, 2020. "Optimal trading without optimal control," Papers 2012.12945, arXiv.org.
    11. Qing-Qing Yang & Wai-Ki Ching & Jiawen Gu & Tak-Kuen Siu, 2020. "Trading strategy with stochastic volatility in a limit order book market," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 43(1), pages 277-301, June.
    12. Philippe Bergault & Olivier Guéant, 2021. "Size matters for OTC market makers: General results and dimensionality reduction techniques," Mathematical Finance, Wiley Blackwell, vol. 31(1), pages 279-322, January.
    13. Álvaro Cartea & Sebastian Jaimungal & Damir Kinzebulatov, 2016. "Algorithmic Trading With Learning," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 19(04), pages 1-30, June.
    14. Sadoghi, Amirhossein & Vecer, Jan, 2022. "Optimal liquidation problem in illiquid markets," European Journal of Operational Research, Elsevier, vol. 296(3), pages 1050-1066.
    15. Joseph Jerome & Leandro Sanchez-Betancourt & Rahul Savani & Martin Herdegen, 2022. "Model-based gym environments for limit order book trading," Papers 2209.07823, arXiv.org.
    16. Qinghua Li, 2014. "Facilitation and Internalization Optimal Strategy in a Multilateral Trading Context," Papers 1404.7320, arXiv.org, revised Jan 2015.
    17. Hall, Anthony D. & Hautsch, Nikolaus, 2007. "Modelling the buy and sell intensity in a limit order book market," Journal of Financial Markets, Elsevier, vol. 10(3), pages 249-286, August.
    18. Etienne Chevalier & M’hamed Gaïgi & Vathana Ly Vath & Mohamed Mnif, 2017. "Optimal Market Dealing Under Constraints," Journal of Optimization Theory and Applications, Springer, vol. 173(1), pages 313-335, April.
    19. Maxime Morariu-Patrichi & Mikko Pakkanen, 2018. "State-dependent Hawkes processes and their application to limit order book modelling," CREATES Research Papers 2018-26, Department of Economics and Business Economics, Aarhus University.
    20. Maxime Morariu-Patrichi & Mikko S. Pakkanen, 2018. "State-dependent Hawkes processes and their application to limit order book modelling," Papers 1809.08060, arXiv.org, revised Sep 2021.
    21. Burcu Aydoğan & Ömür Uğur & Ümit Aksoy, 2023. "Optimal Limit Order Book Trading Strategies with Stochastic Volatility in the Underlying Asset," Computational Economics, Springer;Society for Computational Economics, vol. 62(1), pages 289-324, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:13:y:2025:i:5:p:778-:d:1600631. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.