IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v13y2025i5p716-d1597675.html
   My bibliography  Save this article

Structural Properties of Optimal Maintenance Policies for k -out-of- n Systems with Interdependence Between Internal Deterioration and External Shocks

Author

Listed:
  • Mizuki Kasuya

    (Department of Informatics, University of Electro-Communications, Chofu 182-8585, Japan)

  • Lu Jin

    (Department of Informatics, University of Electro-Communications, Chofu 182-8585, Japan)

Abstract

Many modern engineering systems, such as offshore wind turbines, rely on k -out-of- n configurations to ensure reliability. These systems are exposed to both internal deterioration and external shocks, which can significantly impact operational efficiency and maintenance costs, necessitating optimal maintenance policies. This study investigates an optimal condition-based maintenance policy for a k -out-of- n system, where each unit deteriorates independently following a gamma process and is subject to random external shocks that cause sudden jumps in deterioration. This study considers (1) stochastic dependencies among units, where shock-induced cumulative deterioration in one unit affects others, and (2) interdependencies between external shocks and internal deterioration, where internal deterioration influences external factors and vice versa. Using a Markov decision process framework, we derive an optimal maintenance policy that minimizes expected maintenance costs while incorporating these interdependencies. Under reasonable assumptions, we establish key structural properties of the optimal policy, enabling its efficient identification. A case study on offshore wind turbines demonstrates the effectiveness of the proposed approach, achieving up to a 9.9% reduction in maintenance costs compared to alternative policies. This cost reduction is achieved by optimizing the timing of preventive maintenance while incorporating the two aforementioned types of dependence into the decision-making process. Sensitivity analyses further explore the effects of cost parameters, deterioration rates, and shock characteristics, offering valuable insights into designing maintenance strategies for systems influenced by shocks and interdependent deterioration.

Suggested Citation

  • Mizuki Kasuya & Lu Jin, 2025. "Structural Properties of Optimal Maintenance Policies for k -out-of- n Systems with Interdependence Between Internal Deterioration and External Shocks," Mathematics, MDPI, vol. 13(5), pages 1-23, February.
  • Handle: RePEc:gam:jmathe:v:13:y:2025:i:5:p:716-:d:1597675
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/13/5/716/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/13/5/716/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Alaswad, Suzan & Xiang, Yisha, 2017. "A review on condition-based maintenance optimization models for stochastically deteriorating system," Reliability Engineering and System Safety, Elsevier, vol. 157(C), pages 54-63.
    2. Chen, Nan & Ye, Zhi-Sheng & Xiang, Yisha & Zhang, Linmiao, 2015. "Condition-based maintenance using the inverse Gaussian degradation model," European Journal of Operational Research, Elsevier, vol. 243(1), pages 190-199.
    3. Robin P. Nicolai & Rommert Dekker, 2008. "Optimal Maintenance of Multi-component Systems: A Review," Springer Series in Reliability Engineering, in: Complex System Maintenance Handbook, chapter 11, pages 263-286, Springer.
    4. Hamed Lorvand & Maryam Kelkinnama, 2023. "Reliability analysis and optimal replacement for a k-out-of-n system under a δ -shock model," Journal of Risk and Reliability, , vol. 237(1), pages 98-111, February.
    5. Dui, Hongyan & Zhang, Hao & Wu, Shaomin, 2023. "Optimisation of maintenance policies for a deteriorating multi-component system under external shocks," Reliability Engineering and System Safety, Elsevier, vol. 238(C).
    6. van Noortwijk, J.M., 2009. "A survey of the application of gamma processes in maintenance," Reliability Engineering and System Safety, Elsevier, vol. 94(1), pages 2-21.
    7. Dui, Hongyan & Lu, Yaohui & Wu, Shaomin, 2024. "Competing risks-based resilience approach for multi-state systems under multiple shocks," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    8. Ohnishi, Masamitsu & Kawai, Hajime & Mine, Hisashi, 1986. "An optimal inspection and replacement policy under incomplete state information," European Journal of Operational Research, Elsevier, vol. 27(1), pages 117-128, October.
    9. Oakley, Jordan L. & Wilson, Kevin J. & Philipson, Pete, 2022. "A condition-based maintenance policy for continuously monitored multi-component systems with economic and stochastic dependence," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    10. Shafiee, Mahmood & Finkelstein, Maxim & Bérenguer, Christophe, 2015. "An opportunistic condition-based maintenance policy for offshore wind turbine blades subjected to degradation and environmental shocks," Reliability Engineering and System Safety, Elsevier, vol. 142(C), pages 463-471.
    11. William S. Lovejoy, 1987. "Some Monotonicity Results for Partially Observed Markov Decision Processes," Operations Research, INFORMS, vol. 35(5), pages 736-743, October.
    12. Irawan, Chandra Ade & Ouelhadj, Djamila & Jones, Dylan & Stålhane, Magnus & Sperstad, Iver Bakken, 2017. "Optimisation of maintenance routing and scheduling for offshore wind farms," European Journal of Operational Research, Elsevier, vol. 256(1), pages 76-89.
    13. Nan Zhang & Sen Tian & Kaiquan Cai & Jun Zhang, 2023. "Condition-based maintenance assessment for a deteriorating system considering stochastic failure dependence," IISE Transactions, Taylor & Francis Journals, vol. 55(7), pages 687-697, July.
    14. Olde Keizer, Minou C.A. & Flapper, Simme Douwe P. & Teunter, Ruud H., 2017. "Condition-based maintenance policies for systems with multiple dependent components: A review," European Journal of Operational Research, Elsevier, vol. 261(2), pages 405-420.
    15. Alaa H. Elwany & Nagi Z. Gebraeel & Lisa M. Maillart, 2011. "Structured Replacement Policies for Components with Complex Degradation Processes and Dedicated Sensors," Operations Research, INFORMS, vol. 59(3), pages 684-695, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. de Jonge, Bram & Scarf, Philip A., 2020. "A review on maintenance optimization," European Journal of Operational Research, Elsevier, vol. 285(3), pages 805-824.
    2. Deep, Akash & Zhou, Shiyu & Veeramani, Dharmaraj & Chen, Yong, 2023. "Partially observable Markov decision process-based optimal maintenance planning with time-dependent observations," European Journal of Operational Research, Elsevier, vol. 311(2), pages 533-544.
    3. Andersen, Jesper Fink & Andersen, Anders Reenberg & Kulahci, Murat & Nielsen, Bo Friis, 2022. "A numerical study of Markov decision process algorithms for multi-component replacement problems," European Journal of Operational Research, Elsevier, vol. 299(3), pages 898-909.
    4. Wang, Jun & Zhu, Xiaoyan, 2021. "Joint optimization of condition-based maintenance and inventory control for a k-out-of-n:F system of multi-state degrading components," European Journal of Operational Research, Elsevier, vol. 290(2), pages 514-529.
    5. KarabaÄŸ, Oktay & Eruguz, Ayse Sena & Basten, Rob, 2020. "Integrated optimization of maintenance interventions and spare part selection for a partially observable multi-component system," Reliability Engineering and System Safety, Elsevier, vol. 200(C).
    6. Alaswad, Suzan & Xiang, Yisha, 2017. "A review on condition-based maintenance optimization models for stochastically deteriorating system," Reliability Engineering and System Safety, Elsevier, vol. 157(C), pages 54-63.
    7. Mosayebi Omshi, E. & Shemehsavar, S. & Grall, A., 2024. "An intelligent maintenance policy for a latent degradation system," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    8. Huynh, K.T. & Vu, H.C. & Nguyen, T.D. & Ho, A.C., 2022. "A predictive maintenance model for k-out-of-n:F continuously deteriorating systems subject to stochastic and economic dependencies," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    9. Giorgio, Massimiliano & Pulcini, Gianpaolo, 2024. "The effect of model misspecification of the bounded transformed gamma process on maintenance optimization," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    10. Dias, Luis & Leitão, Armando & Guimarães, Luis, 2021. "Resource definition and allocation for a multi-asset portfolio with heterogeneous degradation," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
    11. Zhang, Zhengxin & Si, Xiaosheng & Hu, Changhua & Lei, Yaguo, 2018. "Degradation data analysis and remaining useful life estimation: A review on Wiener-process-based methods," European Journal of Operational Research, Elsevier, vol. 271(3), pages 775-796.
    12. Mosayebi Omshi, E. & Grall, A. & Shemehsavar, S., 2020. "A dynamic auto-adaptive predictive maintenance policy for degradation with unknown parameters," European Journal of Operational Research, Elsevier, vol. 282(1), pages 81-92.
    13. Eggertsson, Ragnar & Eruguz, Ayse Sena & Basten, Rob & Maillart, Lisa M., 2025. "Maintenance optimization for multi-component systems with a single sensor," European Journal of Operational Research, Elsevier, vol. 320(3), pages 559-569.
    14. Cai, Yue & Teunter, Ruud H. & de Jonge, Bram, 2023. "A data-driven approach for condition-based maintenance optimization," European Journal of Operational Research, Elsevier, vol. 311(2), pages 730-738.
    15. Xia, Tangbin & Dong, Yifan & Xiao, Lei & Du, Shichang & Pan, Ershun & Xi, Lifeng, 2018. "Recent advances in prognostics and health management for advanced manufacturing paradigms," Reliability Engineering and System Safety, Elsevier, vol. 178(C), pages 255-268.
    16. Li, Yaohan & Dong, You & Guo, Hongyuan, 2023. "Copula-based multivariate renewal model for life-cycle analysis of civil infrastructure considering multiple dependent deterioration processes," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    17. Giovanni Rinaldi & Philipp R. Thies & Lars Johanning, 2021. "Current Status and Future Trends in the Operation and Maintenance of Offshore Wind Turbines: A Review," Energies, MDPI, vol. 14(9), pages 1-28, April.
    18. Azizi, Fariba & Salari, Nooshin, 2023. "A novel condition-based maintenance framework for parallel manufacturing systems based on bivariate birth/birth–death processes," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    19. Li, Meiyan & Wu, Bei, 2024. "Optimal condition-based opportunistic maintenance policy for two-component systems considering common cause failure," Reliability Engineering and System Safety, Elsevier, vol. 250(C).
    20. Nguyen, Ho Si Hung & Do, Phuc & Vu, Hai-Canh & Iung, Benoit, 2019. "Dynamic maintenance grouping and routing for geographically dispersed production systems," Reliability Engineering and System Safety, Elsevier, vol. 185(C), pages 392-404.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:13:y:2025:i:5:p:716-:d:1597675. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.