Author
Listed:
- Boyuan Wu
(School of Statistics and Data Science, Jiangxi University of Finance and Economics, Nanchang 330013, China)
- Jia Luo
(School of Electrical Engineering, Shandong University, Jinan 250061, China)
Abstract
With the rapid advancement of artificial intelligence (AI) technology, the demand for vast amounts of data for training AI algorithms to attain intelligence has become indispensable. However, in the realm of big data technology, the high feature dimensions of the data frequently give rise to overfitting issues during training, thereby diminishing model accuracy. To enhance model prediction accuracy, feature selection (FS) methods have arisen with the goal of eliminating redundant features within datasets. In this paper, a highly efficient FS method with advanced FS performance, called EMEPO, is proposed. It combines three learning strategies on the basis of the Parrot Optimizer (PO) to better ensure FS performance. Firstly, a novel exploitation strategy is introduced, which integrates randomness, optimality, and Levy flight to enhance the algorithm’s local exploitation capabilities, reduce execution time in solving FS problems, and enhance classification accuracy. Secondly, a multi-population evolutionary strategy is introduced, which takes into account the diversity of individuals based on fitness values to optimize the balance between exploration and exploitation stages of the algorithm, ultimately improving the algorithm’s capability to explore the FS solution space globally. Finally, a unique exploration strategy is introduced, focusing on individual diversity learning to boost population diversity in solving FS problems. This approach improves the algorithm’s capacity to avoid local suboptimal feature subsets. The EMEPO-based FS method is tested on 23 FS datasets spanning low-, medium-, and high-dimensional data. The results show exceptional performance in classification accuracy, feature reduction, execution efficiency, convergence speed, and stability. This indicates the high promise of the EMEPO-based FS method as an effective and efficient approach for feature selection.
Suggested Citation
Boyuan Wu & Jia Luo, 2025.
"A Novel Improved Binary Optimization Algorithm and Its Application in FS Problems,"
Mathematics, MDPI, vol. 13(4), pages 1-37, February.
Handle:
RePEc:gam:jmathe:v:13:y:2025:i:4:p:675-:d:1594173
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:13:y:2025:i:4:p:675-:d:1594173. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.