IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v13y2025i2p292-d1569637.html
   My bibliography  Save this article

Effectiveness of Centrality Measures for Competitive Influence Diffusion in Social Networks

Author

Listed:
  • Fairouz Medjahed

    (Instituto de Matemática Interdisciplinar, Departamento de Estadística e Ivestigacion Operativa, Universidad Complutense de Madrid, Plaza de las Ciencias 3, 28040 Madrid, Spain)

  • Elisenda Molina

    (Instituto de Matemática Interdisciplinar, Departamento de Estadística e Ivestigacion Operativa, Universidad Complutense de Madrid, Plaza de las Ciencias 3, 28040 Madrid, Spain)

  • Juan Tejada

    (Instituto de Matemática Interdisciplinar, Departamento de Estadística e Ivestigacion Operativa, Universidad Complutense de Madrid, Plaza de las Ciencias 3, 28040 Madrid, Spain)

Abstract

This paper investigates the effectiveness of centrality measures for the influence maximization problem in competitive social networks (SNs). We consider a framework, which we call “I-Game” (Influence Game), to conceptualize the adoption of competing products as a strategic game. Firms, as players, aim to maximize the adoption of their products, considering the possible rational choice of their competitors under a competitive diffusion model. They independently and simultaneously select their seeds (initial adopters) using an algorithm from a finite strategy space of algorithms. Since strategies may agree to select similar seeds, it is necessary to include an initial seed tie-breaking rule into the game model of the I-Game. We perform an empirical study in a two-player game under the competitive independent cascade model with three different seed-tie-breaking rules using four real-world SNs. The objective is to compare the performance of centrality-based strategies with some state-of-the-art algorithms used in the non-competitive influence maximization problem. The experimental results show that Nash equilibria vary according to the SN, seed-tie-breaking rules, and budgets. Moreover, they reveal that classical centrality measures outperform the most effective propagation-based algorithms in a competitive diffusion setting in three graphs. We attempt to explain these results by introducing a novel metric, the Early Influence Diffusion (EID) index, which measures the early influence diffusion of a strategy in a non-competitive setting. The EID index may be considered a valuable metric for predicting the effectiveness of a strategy in a competitive influence diffusion setting.

Suggested Citation

  • Fairouz Medjahed & Elisenda Molina & Juan Tejada, 2025. "Effectiveness of Centrality Measures for Competitive Influence Diffusion in Social Networks," Mathematics, MDPI, vol. 13(2), pages 1-32, January.
  • Handle: RePEc:gam:jmathe:v:13:y:2025:i:2:p:292-:d:1569637
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/13/2/292/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/13/2/292/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Shlomo Kalish, 1985. "A New Product Adoption Model with Price, Advertising, and Uncertainty," Management Science, INFORMS, vol. 31(12), pages 1569-1585, December.
    2. Kübra Tanınmış & Necati Aras & İ. Kuban Altınel & Evren Güney, 2020. "Minimizing the misinformation spread in social networks," IISE Transactions, Taylor & Francis Journals, vol. 52(8), pages 850-863, August.
    3. Yann Bramoullé & Dunia López-Pintado & Sanjeev Goyal & Fernando Vega-Redondo, 2004. "Network formation and anti-coordination games," International Journal of Game Theory, Springer;Game Theory Society, vol. 33(1), pages 1-19, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marie-Estelle Binet & Lionel Richefort, 2011. "Diffusion of irrigation technologies: the role of mimicking behaviour and public incentives," Applied Economics Letters, Taylor & Francis Journals, vol. 18(1), pages 43-48.
    2. Wilhelm, Wilbert E. & Xu, Kaihong, 2002. "Prescribing product upgrades, prices and production levels over time in a stochastic environment," European Journal of Operational Research, Elsevier, vol. 138(3), pages 601-621, May.
    3. Berninghaus, Siegfried K. & Ehrhart, Karl-Martin & Ott, Marion, 2008. "Myopically Forward-Looking Agents in a Network Formation Game: Theory and Experimental Evidence," Sonderforschungsbereich 504 Publications 08-02, Sonderforschungsbereich 504, Universität Mannheim;Sonderforschungsbereich 504, University of Mannheim.
    4. Michel Grabisch & Fen Li, 2020. "Anti-conformism in the Threshold Model of Collective Behavior," Dynamic Games and Applications, Springer, vol. 10(2), pages 444-477, June.
    5. Darghouth, M.N. & Ait-kadi, D. & Chelbi, A., 2017. "Joint optimization of design, warranty and price for products sold with maintenance service contracts," Reliability Engineering and System Safety, Elsevier, vol. 165(C), pages 197-208.
    6. Trichy V. Krishnan & Frank M. Bass & Dipak C. Jain, 1999. "Optimal Pricing Strategy for New Products," Management Science, INFORMS, vol. 45(12), pages 1650-1663, December.
    7. Ataman, B.M., 2007. "Managing brands," Other publications TiSEM 462dcbba-2ac1-46d1-a61c-f, Tilburg University, School of Economics and Management.
    8. Vardit Landsman & Moshe Givon, 2010. "The diffusion of a new service: Combining service consideration and brand choice," Quantitative Marketing and Economics (QME), Springer, vol. 8(1), pages 91-121, March.
    9. Abedi, Vahideh Sadat, 2019. "Compartmental diffusion modeling: Describing customer heterogeneity & communication network to support decisions for new product introductions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 536(C).
    10. Orbach Yair & Fruchter Gila E., 2010. "A Utility-Based Diffusion Model Applied to the Digital Camera Case," Review of Marketing Science, De Gruyter, vol. 8(1), pages 1-28, June.
    11. Zilberman, David & Kaplan, Scott, 2014. "What the Adoption Literature can teach us about Social Media and Network Effects on Food Choices," 2014 AAEA/EAAE/CAES Joint Symposium: Social Networks, Social Media and the Economics of Food, May 29-30, 2014, Montreal, Canada 173076, Agricultural and Applied Economics Association.
    12. Chaab, Jafar & Salhab, Rabih & Zaccour, Georges, 2022. "Dynamic pricing and advertising in the presence of strategic consumers and social contagion: A mean-field game approach," Omega, Elsevier, vol. 109(C).
    13. Antoine Mandel & Xavier Venel, 2022. "Sequential competition and the strategic origins of preferential attachment," International Journal of Game Theory, Springer;Game Theory Society, vol. 51(3), pages 483-508, November.
    14. Kaldasch, Joachim, 2015. "The Product Life Cycle of Durable Goods," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 10(2), pages 1-17.
    15. Velickovic, Stevan & Radojicic, Valentina & Bakmaz, Bojan, 2016. "The effect of service rollout on demand forecasting: The application of modified Bass model to the step growing markets," Technological Forecasting and Social Change, Elsevier, vol. 107(C), pages 130-140.
    16. Anja Lambrecht & Katja Seim & Catherine Tucker, 2011. "Stuck in the Adoption Funnel: The Effect of Interruptions in the Adoption Process on Usage," Marketing Science, INFORMS, vol. 30(2), pages 355-367, 03-04.
    17. Feri, Francesco, 2007. "Stochastic stability in networks with decay," Journal of Economic Theory, Elsevier, vol. 135(1), pages 442-457, July.
    18. Amir Farshbaf-Geranmayeh & Masoud Rabbani & Ata Allah Taleizadeh, 2018. "Channel Coordination with Cooperative Advertising Considering Effect of Advertising on Willingness to Pay," Journal of Optimization Theory and Applications, Springer, vol. 176(2), pages 509-525, February.
    19. M. Breton & F. Chauny & G. Zaccour, 1997. "Leader–Follower Dynamic Game of New Product Diffusion," Journal of Optimization Theory and Applications, Springer, vol. 92(1), pages 77-98, January.
    20. Zsolt Katona & Miklos Sarvary, 2008. "Network Formation and the Structure of the Commercial World Wide Web," Marketing Science, INFORMS, vol. 27(5), pages 764-778, 09-10.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:13:y:2025:i:2:p:292-:d:1569637. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.