IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v12y2024i8p1261-d1380140.html
   My bibliography  Save this article

The Efficiency of Hazard Rate Preservation Method for Generating Discrete Rayleigh–Lindley Distribution

Author

Listed:
  • Hanan Haj Ahmad

    (Department of Basic Science, The General Administration of Preparatory Year, King Faisal University, Hofuf 31982, Al-Ahsa, Saudi Arabia
    Department of Mathematics and Statistics, College of Science, King Faisal University, Hofuf 31982, Al-Ahsa, Saudi Arabia)

Abstract

In this study, we introduce two novel discrete counterparts for the Rayleigh–Lindley mixture, constructed through the application of survival and hazard rate preservation techniques. These two-parameter discrete models demonstrate exceptional adaptability across various data types, including skewed, symmetric, and monotonic datasets. Statistical analyses were conducted using maximum likelihood estimation and Bayesian approaches to assess these models. The Bayesian analysis, in particular, was implemented with the squared error and LINEX loss functions, incorporating a modified Lwin Prior distribution for parameter estimation. Through simulation studies and numerical methods, we evaluated the estimators’ performance and compared the effectiveness of the two discrete adaptations of the Rayleigh–Lindley distribution. The simulations reveal that Bayesian methods are especially effective in this setting due to their flexibility and adaptability. They provide more precise and dependable estimates for the discrete Rayleigh–Lindley model, especially when using the hazard rate preservation method. This method is a compelling alternative to the traditional survival discretization approach, showcasing its significant potential in enhancing model accuracy and applicability. Furthermore, two real data sets are analyzed to assess the performance of each analog.

Suggested Citation

  • Hanan Haj Ahmad, 2024. "The Efficiency of Hazard Rate Preservation Method for Generating Discrete Rayleigh–Lindley Distribution," Mathematics, MDPI, vol. 12(8), pages 1-17, April.
  • Handle: RePEc:gam:jmathe:v:12:y:2024:i:8:p:1261-:d:1380140
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/12/8/1261/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/12/8/1261/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bebbington, Mark & Lai, Chin-Diew & Wellington, Morgan & Zitikis, RiÄ ardas, 2012. "The discrete additive Weibull distribution: A bathtub-shaped hazard for discontinuous failure data," Reliability Engineering and System Safety, Elsevier, vol. 106(C), pages 37-44.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mohamed Aboraya & Haitham M. Yousof & G.G. Hamedani & Mohamed Ibrahim, 2020. "A New Family of Discrete Distributions with Mathematical Properties, Characterizations, Bayesian and Non-Bayesian Estimation Methods," Mathematics, MDPI, vol. 8(10), pages 1-25, September.
    2. Mohamed Ibrahim & M. Masoom Ali & Haitham M. Yousof, 2023. "The Discrete Analogue of the Weibull G Family: Properties, Different Applications, Bayesian and Non-Bayesian Estimation Methods," Annals of Data Science, Springer, vol. 10(4), pages 1069-1106, August.
    3. Guibing, Gao & Wenhui, Yue & Wenchu, Ou & Hao, Tang, 2018. "Vulnerability evaluation method applied to manufacturing systems," Reliability Engineering and System Safety, Elsevier, vol. 180(C), pages 255-265.
    4. Hanan Haj Ahmad & Dina A. Ramadan & Ehab M. Almetwally, 2024. "Evaluating the Discrete Generalized Rayleigh Distribution: Statistical Inferences and Applications to Real Data Analysis," Mathematics, MDPI, vol. 12(2), pages 1-23, January.
    5. Lemonte, Artur J., 2013. "A new exponential-type distribution with constant, decreasing, increasing, upside-down bathtub and bathtub-shaped failure rate function," Computational Statistics & Data Analysis, Elsevier, vol. 62(C), pages 149-170.
    6. Cihangir Kan & Serkan Eryilmaz, 2021. "Reliability assessment of a discrete time cold standby repairable system," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(3), pages 613-628, October.
    7. Walid Emam & Yusra Tashkandy & G.G. Hamedani & Mohamed Abdelhamed Shehab & Mohamed Ibrahim & Haitham M. Yousof, 2023. "A Novel Discrete Generator with Modeling Engineering, Agricultural and Medical Count and Zero-Inflated Real Data with Bayesian, and Non-Bayesian Inference," Mathematics, MDPI, vol. 11(5), pages 1-28, February.
    8. M. S. Eliwa & Ziyad Ali Alhussain & M. El-Morshedy, 2020. "Discrete Gompertz-G Family of Distributions for Over- and Under-Dispersed Data with Properties, Estimation, and Applications," Mathematics, MDPI, vol. 8(3), pages 1-26, March.
    9. Mohamed S. Eliwa & Mahmoud El-Morshedy & Haitham M. Yousof, 2022. "A Discrete Exponential Generalized-G Family of Distributions: Properties with Bayesian and Non-Bayesian Estimators to Model Medical, Engineering and Agriculture Data," Mathematics, MDPI, vol. 10(18), pages 1-29, September.
    10. Alessandro Barbiero, 2022. "Discrete analogues of continuous bivariate probability distributions," Annals of Operations Research, Springer, vol. 312(1), pages 23-43, May.
    11. Robab Aghazadeh Chakherloo & Mohammad Pourgol-Mohammad & Kamran Sepanloo, 2017. "Change points estimations of bathtub-shaped hazard functions," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 8(3), pages 553-559, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:12:y:2024:i:8:p:1261-:d:1380140. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.