IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v12y2024i2p183-d1314141.html
   My bibliography  Save this article

Evaluating the Discrete Generalized Rayleigh Distribution: Statistical Inferences and Applications to Real Data Analysis

Author

Listed:
  • Hanan Haj Ahmad

    (Department of Basic Science, The General Administration of Preparatory Year, King Faisal University, Hofuf 31982, Al Ahsa, Saudi Arabia)

  • Dina A. Ramadan

    (Department of Mathematics, Faculty of Science, Mansoura University, Mansoura 33516, Egypt)

  • Ehab M. Almetwally

    (Department of Mathematics and Statistics, Faculty of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11432, Riyadh, Saudi Arabia
    Faculty of Business Administration, Delta University of Science and Technology, Gamasa 11152, Egypt)

Abstract

Various discrete lifetime distributions have been observed in real data analysis. Numerous discrete models have been derived from a continuous distribution using the survival discretization method, owing to its simplicity and appealing formulation. This study focuses on the discrete analog of the newly generalized Rayleigh distribution. Both classical and Bayesian statistical inferences are performed to evaluate the efficacy of the new discrete model, particularly in terms of relative bias, mean square error, and coverage probability. Additionally, the study explores different important submodels and limiting behavior for the new discrete distribution. Various statistical functions have been examined, including moments, stress–strength, mean residual lifetime, mean past time, and order statistics. Finally, two real data examples are employed to evaluate the new discrete model. Simulations and numerical analyses play a pivotal role in facilitating statistical estimation and data modeling. The study concludes that the discrete generalized Rayleigh distribution presents a notably appealing alternative to other competing discrete distributions.

Suggested Citation

  • Hanan Haj Ahmad & Dina A. Ramadan & Ehab M. Almetwally, 2024. "Evaluating the Discrete Generalized Rayleigh Distribution: Statistical Inferences and Applications to Real Data Analysis," Mathematics, MDPI, vol. 12(2), pages 1-23, January.
  • Handle: RePEc:gam:jmathe:v:12:y:2024:i:2:p:183-:d:1314141
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/12/2/183/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/12/2/183/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bebbington, Mark & Lai, Chin-Diew & Wellington, Morgan & Zitikis, RiÄ ardas, 2012. "The discrete additive Weibull distribution: A bathtub-shaped hazard for discontinuous failure data," Reliability Engineering and System Safety, Elsevier, vol. 106(C), pages 37-44.
    2. S. Goliforushani & M. Asadi, 2008. "On the discrete mean past lifetime," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 68(2), pages 209-217, September.
    3. Gauss Cordeiro & Cláudio Cristino & Elizabeth Hashimoto & Edwin Ortega, 2013. "The beta generalized Rayleigh distribution with applications to lifetime data," Statistical Papers, Springer, vol. 54(1), pages 133-161, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Salehi, E.T. & Badía, F.G. & Asadi, M., 2012. "Preservation properties of a homogeneous Poisson process stopped at an independent random time," Statistics & Probability Letters, Elsevier, vol. 82(3), pages 574-585.
    2. Antonio Di Crescenzo & Abdolsaeed Toomaj, 2022. "Weighted Mean Inactivity Time Function with Applications," Mathematics, MDPI, vol. 10(16), pages 1-30, August.
    3. Jose K. K. & Sivadas Remya, 2015. "Negative Binomial Marshall–Olkin Rayleigh Distribution and Its Applications," Stochastics and Quality Control, De Gruyter, vol. 30(2), pages 89-98, December.
    4. Linmin Hu & Rui Peng, 2019. "Reliability modeling for a discrete time multi-state system with random and dependent transition probabilities," Journal of Risk and Reliability, , vol. 233(5), pages 747-760, October.
    5. Hanan Haj Ahmad & Dina A. Ramadan & Ehab M. Almetwally, 2024. "Tampered Random Variable Analysis in Step-Stress Testing: Modeling, Inference, and Applications," Mathematics, MDPI, vol. 12(8), pages 1-25, April.
    6. Mohamed Aboraya & Haitham M. Yousof & G.G. Hamedani & Mohamed Ibrahim, 2020. "A New Family of Discrete Distributions with Mathematical Properties, Characterizations, Bayesian and Non-Bayesian Estimation Methods," Mathematics, MDPI, vol. 8(10), pages 1-25, September.
    7. Mohamed Ibrahim & M. Masoom Ali & Haitham M. Yousof, 2023. "The Discrete Analogue of the Weibull G Family: Properties, Different Applications, Bayesian and Non-Bayesian Estimation Methods," Annals of Data Science, Springer, vol. 10(4), pages 1069-1106, August.
    8. Guibing, Gao & Wenhui, Yue & Wenchu, Ou & Hao, Tang, 2018. "Vulnerability evaluation method applied to manufacturing systems," Reliability Engineering and System Safety, Elsevier, vol. 180(C), pages 255-265.
    9. Hanan Haj Ahmad, 2024. "The Efficiency of Hazard Rate Preservation Method for Generating Discrete Rayleigh–Lindley Distribution," Mathematics, MDPI, vol. 12(8), pages 1-17, April.
    10. Lemonte, Artur J., 2013. "A new exponential-type distribution with constant, decreasing, increasing, upside-down bathtub and bathtub-shaped failure rate function," Computational Statistics & Data Analysis, Elsevier, vol. 62(C), pages 149-170.
    11. Ingo Hoffmann & Christoph J. Börner, 2021. "The risk function of the goodness-of-fit tests for tail models," Statistical Papers, Springer, vol. 62(4), pages 1853-1869, August.
    12. Cihangir Kan & Serkan Eryilmaz, 2021. "Reliability assessment of a discrete time cold standby repairable system," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(3), pages 613-628, October.
    13. Walid Emam & Yusra Tashkandy & G.G. Hamedani & Mohamed Abdelhamed Shehab & Mohamed Ibrahim & Haitham M. Yousof, 2023. "A Novel Discrete Generator with Modeling Engineering, Agricultural and Medical Count and Zero-Inflated Real Data with Bayesian, and Non-Bayesian Inference," Mathematics, MDPI, vol. 11(5), pages 1-28, February.
    14. Unnikrishnan Nair, N. & Sankaran, P.G., 2013. "Characterizations of discrete distributions using reliability concepts in reversed time," Statistics & Probability Letters, Elsevier, vol. 83(9), pages 1939-1945.
    15. Khan, Ruhul Ali & Bhattacharyya, Dhrubasish & Mitra, Murari, 2021. "On some properties of the mean inactivity time function," Statistics & Probability Letters, Elsevier, vol. 170(C).
    16. M. S. Eliwa & Ziyad Ali Alhussain & M. El-Morshedy, 2020. "Discrete Gompertz-G Family of Distributions for Over- and Under-Dispersed Data with Properties, Estimation, and Applications," Mathematics, MDPI, vol. 8(3), pages 1-26, March.
    17. Mohamed S. Eliwa & Mahmoud El-Morshedy & Haitham M. Yousof, 2022. "A Discrete Exponential Generalized-G Family of Distributions: Properties with Bayesian and Non-Bayesian Estimators to Model Medical, Engineering and Agriculture Data," Mathematics, MDPI, vol. 10(18), pages 1-29, September.
    18. Mavis Pararai & Broderick O. Oluyede & Gayan Warahena-Liyanage, 2016. "The Beta Lindley-Poisson Distribution with Applications," Journal of Statistical and Econometric Methods, SCIENPRESS Ltd, vol. 5(4), pages 1-1.
    19. Karol I. Santoro & Diego I. Gallardo & Osvaldo Venegas & Isaac E. Cortés & Héctor W. Gómez, 2023. "A Heavy-Tailed Distribution Based on the Lomax–Rayleigh Distribution with Applications to Medical Data," Mathematics, MDPI, vol. 11(22), pages 1-15, November.
    20. Alessandro Barbiero, 2022. "Discrete analogues of continuous bivariate probability distributions," Annals of Operations Research, Springer, vol. 312(1), pages 23-43, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:12:y:2024:i:2:p:183-:d:1314141. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.