IDEAS home Printed from https://ideas.repec.org/a/spr/ijsaem/v8y2017i3d10.1007_s13198-016-0567-3.html
   My bibliography  Save this article

Change points estimations of bathtub-shaped hazard functions

Author

Listed:
  • Robab Aghazadeh Chakherloo

    (Islamic Azad University, Science and Research Branch)

  • Mohammad Pourgol-Mohammad

    (Sahand University of Technology)

  • Kamran Sepanloo

    (Nuclear Science and Technology Research Institute)

Abstract

The life data analysis has been finding increasing importance for every industry, resulting in higher quality and cost reduction in current fierce competitive market. The hazard function for life models have three distinct phases of burn-in, useful life and wear-out shown in the bath-tub curves. Change points estimation is important for bathtub-shaped hazard function models in reliability and life data analysis for the product developer and designers to have a relatively accurate estimation of the burn-in, useful life and onset of the wear-out life phases. The applications are for determination and assisting to plan appropriate burn-in, guarantee, maintenance, repair and replacement strategies. In this research, life time interval is studied for bathtub shaped hazard function. Two change points are calculated for burn-in and useful life phases, as well as useful life and wear out phases. Two criteria are used in this study for determination of the change point including (1) minimum of hazard function and (2) maximum change in slope of hazard function. This research is structured as a parametric approach with Bayesian inference utilized as the parameter estimation. The modified Weibull distribution are determined as the suitable models for simulation of all three life phases. In this paper, failure data of an electronic system case is used for the method demonstration.

Suggested Citation

  • Robab Aghazadeh Chakherloo & Mohammad Pourgol-Mohammad & Kamran Sepanloo, 2017. "Change points estimations of bathtub-shaped hazard functions," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 8(3), pages 553-559, September.
  • Handle: RePEc:spr:ijsaem:v:8:y:2017:i:3:d:10.1007_s13198-016-0567-3
    DOI: 10.1007/s13198-016-0567-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13198-016-0567-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13198-016-0567-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Murari Mitra & Sujit Basu, 1995. "Change point estimation in non-monotonic aging models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 47(3), pages 483-491, September.
    2. Bebbington, Mark & Lai, Chin-Diew & Zitikis, RiÄ ardas, 2007. "A flexible Weibull extension," Reliability Engineering and System Safety, Elsevier, vol. 92(6), pages 719-726.
    3. Almalki, Saad J. & Yuan, Jingsong, 2013. "A new modified Weibull distribution," Reliability Engineering and System Safety, Elsevier, vol. 111(C), pages 164-170.
    4. Bebbington, Mark & Lai, Chin-Diew & Wellington, Morgan & Zitikis, RiÄ ardas, 2012. "The discrete additive Weibull distribution: A bathtub-shaped hazard for discontinuous failure data," Reliability Engineering and System Safety, Elsevier, vol. 106(C), pages 37-44.
    5. Tuan Pham & Hung Nguyen, 1993. "Bootstrapping the change-point of a hazard rate," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 45(2), pages 331-340, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mansour Shrahili & Naif Alotaibi & Devendra Kumar & Salem A. Alyami, 2020. "Inference for the Two Parameter Reduced Kies Distribution under Progressive Type-II Censoring," Mathematics, MDPI, vol. 8(11), pages 1-20, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lemonte, Artur J., 2013. "A new exponential-type distribution with constant, decreasing, increasing, upside-down bathtub and bathtub-shaped failure rate function," Computational Statistics & Data Analysis, Elsevier, vol. 62(C), pages 149-170.
    2. Abba, Badamasi & Wang, Hong & Bakouch, Hassan S., 2022. "A reliability and survival model for one and two failure modes system with applications to complete and censored datasets," Reliability Engineering and System Safety, Elsevier, vol. 223(C).
    3. He, Bo & Cui, Weimin & Du, Xiaofeng, 2016. "An additive modified Weibull distribution," Reliability Engineering and System Safety, Elsevier, vol. 145(C), pages 28-37.
    4. Almalki, Saad J. & Nadarajah, Saralees, 2014. "Modifications of the Weibull distribution: A review," Reliability Engineering and System Safety, Elsevier, vol. 124(C), pages 32-55.
    5. Ahmad, Abd EL-Baset A. & Ghazal, M.G.M., 2020. "Exponentiated additive Weibull distribution," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    6. Santosh B. Rane & Yahya A.M. Narvel & Niloy Khatua, 2017. "Development of mechanism for mounting secondary isolating contacts (SICs) in air circuit breakers (ACBs) with high operational reliability," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 8(2), pages 1816-1831, November.
    7. Muhammad Ijaz & Syed Muhammad Asim & Alamgir & Muhammad Farooq & Sajjad Ahmad Khan & Sadaf Manzoor, 2020. "A Gull Alpha Power Weibull distribution with applications to real and simulated data," PLOS ONE, Public Library of Science, vol. 15(6), pages 1-19, June.
    8. Filippo Domma & Francesca Condino & Božidar V. Popović, 2017. "A new generalized weighted Weibull distribution with decreasing, increasing, upside-down bathtub, N-shape and M-shape hazard rate," Journal of Applied Statistics, Taylor & Francis Journals, vol. 44(16), pages 2978-2993, December.
    9. Tien Thanh Thach & Radim Bris, 2020. "Improved new modified Weibull distribution: A Bayes study using Hamiltonian Monte Carlo simulation," Journal of Risk and Reliability, , vol. 234(3), pages 496-511, June.
    10. Pescim, Rodrigo R. & Demétrio, Clarice G.B. & Cordeiro, Gauss M. & Ortega, Edwin M.M. & Urbano, Mariana R., 2010. "The beta generalized half-normal distribution," Computational Statistics & Data Analysis, Elsevier, vol. 54(4), pages 945-957, April.
    11. Santosh B. Rane & Yahya A. M. Narvel, 2016. "Reliability assessment and improvement of air circuit breaker (ACB) mechanism by identifying and eliminating the root causes," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 7(1), pages 305-321, December.
    12. Gokarna R. Aryal & Keshav P. Pokhrel & Netra Khanal & Chris P. Tsokos, 2019. "Reliability Models Using the Composite Generalizers of Weibull Distribution," Annals of Data Science, Springer, vol. 6(4), pages 807-829, December.
    13. Abukari Abdul-Lateef & Amadu Yakubu & Shei Baba Sayibu, 2024. "On the Topp-Leone Generalized Power Weibull Distribution: Properties, Applications and Regression," Journal of Statistical and Econometric Methods, SCIENPRESS Ltd, vol. 13(2), pages 1-1.
    14. Sanku Dey & Vikas Kumar Sharma & Mhamed Mesfioui, 2017. "A New Extension of Weibull Distribution with Application to Lifetime Data," Annals of Data Science, Springer, vol. 4(1), pages 31-61, March.
    15. Santosh B. Rane & Prathamesh R. Potdar & Suraj Rane, 2019. "Accelerated life testing for reliability improvement: a case study on Moulded Case Circuit Breaker (MCCB) mechanism," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 10(6), pages 1668-1690, December.
    16. Braglia, Marcello & Carmignani, Gionata & Frosolini, Marco & Zammori, Francesco, 2012. "Data classification and MTBF prediction with a multivariate analysis approach," Reliability Engineering and System Safety, Elsevier, vol. 97(1), pages 27-35.
    17. Zeng, Hongtao & Lan, Tian & Chen, Qiming, 2016. "Five and four-parameter lifetime distributions for bathtub-shaped failure rate using Perks mortality equation," Reliability Engineering and System Safety, Elsevier, vol. 152(C), pages 307-315.
    18. Hadi Saboori & Ghobad Barmalzan & Seyyed Masih Ayat, 2020. "Generalized Modified Inverse Weibull Distribution: Its Properties and Applications," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 82(2), pages 247-269, November.
    19. Jorge Navarro & Antonio Guillamón & María del Carmen Ruiz, 2009. "Generalized mixtures in reliability modelling: Applications to the construction of bathtub shaped hazard models and the study of systems," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 25(3), pages 323-337, May.
    20. Gauss M. Cordeiro & Giovana O. Silva & Edwin M. M. Ortega, 2016. "An extended-G geometric family," Journal of Statistical Distributions and Applications, Springer, vol. 3(1), pages 1-16, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:ijsaem:v:8:y:2017:i:3:d:10.1007_s13198-016-0567-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.