State of Health Prediction of Electric Vehicles’ Retired Batteries Based on First-Life Historical Degradation Data Using Predictive Time-Series Algorithms
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Guo, Fei & Wu, Xiongwei & Liu, Lili & Ye, Jilei & Wang, Tao & Fu, Lijun & Wu, Yuping, 2023. "Prediction of remaining useful life and state of health of lithium batteries based on time series feature and Savitzky-Golay filter combined with gated recurrent unit neural network," Energy, Elsevier, vol. 270(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Fengdan Liu & Jiangyi Chen & Dongchen Qin & Tingting Wang, 2023. "Research on Appearance Detection, Sorting, and Regrouping Technology of Retired Batteries for Electric Vehicles," Sustainability, MDPI, vol. 15(21), pages 1-18, November.
- Tang, Aihua & Jiang, Yihan & Nie, Yuwei & Yu, Quanqing & Shen, Weixiang & Pecht, Michael G., 2023. "Health and lifespan prediction considering degradation patterns of lithium-ion batteries based on transferable attention neural network," Energy, Elsevier, vol. 279(C).
- Khan, Noman & Khan, Samee Ullah & Baik, Sung Wook, 2023. "Deep dive into hybrid networks: A comparative study and novel architecture for efficient power prediction," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
- Li, Kailing & Xie, Naiming, 2024. "Battery health prognostics based on improved incremental capacity using a hybrid grey modelling and Gaussian process regression," Energy, Elsevier, vol. 303(C).
- Hao Zhou & Qiaoling He & Yichuan Li & Yangjun Wang & Dongsheng Wang & Yongliang Xie, 2024. "Enhanced Second-Order RC Equivalent Circuit Model with Hybrid Offline–Online Parameter Identification for Accurate SoC Estimation in Electric Vehicles under Varying Temperature Conditions," Energies, MDPI, vol. 17(17), pages 1-19, September.
- Paweł Kut & Katarzyna Pietrucha-Urbanik & Martina Zeleňáková, 2024. "Assessing the Role of Hydrogen in Sustainable Energy Futures: A Comprehensive Bibliometric Analysis of Research and International Collaborations in Energy and Environmental Engineering," Energies, MDPI, vol. 17(8), pages 1-26, April.
- Pang, Hui & Chen, Kaiqiang & Geng, Yuanfei & Wu, Longxing & Wang, Fengbin & Liu, Jiahao, 2024. "Accurate capacity and remaining useful life prediction of lithium-ion batteries based on improved particle swarm optimization and particle filter," Energy, Elsevier, vol. 293(C).
- Xue, Jingsong & Ma, Wentao & Feng, Xiaoyang & Guo, Peng & Guo, Yaosong & Hu, Xianzhi & Chen, Badong, 2023. "Stacking integrated learning model via ELM and GRU with mixture correntropy loss for robust state of health estimation of lithium-ion batteries," Energy, Elsevier, vol. 284(C).
- Zheng, Xidong & Chen, Huangbin & Jin, Tao, 2024. "A new optimization approach considering demand response management and multistage energy storage: A novel perspective for Fujian Province," Renewable Energy, Elsevier, vol. 220(C).
- Shen, Yudong & Wang, Xueyuan & Jiang, Zhao & Luo, Bingyin & Chen, Daidai & Wei, Xuezhe & Dai, Haifeng, 2024. "Online detection of lithium plating onset during constant and multistage constant current fast charging for lithium-ion batteries," Applied Energy, Elsevier, vol. 370(C).
- Zheng, Jianfei & Ren, Jincheng & Zhang, Jianxun & Pei, Hong & Zhang, Zhengxin, 2023. "A lifetime prediction method for Lithium-ion batteries considering storage degradation of spare parts," Energy, Elsevier, vol. 282(C).
- Guo, Junyu & Wan, Jia-Lun & Yang, Yan & Dai, Le & Tang, Aimin & Huang, Bangkui & Zhang, Fangfang & Li, He, 2023. "A deep feature learning method for remaining useful life prediction of drilling pumps," Energy, Elsevier, vol. 282(C).
- Singh, S. & Budarapu, P.R., 2024. "Deep machine learning approaches for battery health monitoring," Energy, Elsevier, vol. 300(C).
- Zheng, Xidong & Zhou, Sheng & Jin, Tao, 2023. "A new machine learning-based approach for cross-region coupled wind-storage integrated systems identification considering electricity demand response and data integration: A new provincial perspective," Energy, Elsevier, vol. 283(C).
More about this item
Keywords
EV batteries; second-life batteries; degradation; neural network;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:12:y:2024:i:7:p:1051-:d:1367940. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.