A lifetime prediction method for Lithium-ion batteries considering storage degradation of spare parts
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2023.128460
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Molini, A. & Talkner, P. & Katul, G.G. & Porporato, A., 2011. "First passage time statistics of Brownian motion with purely time dependent drift and diffusion," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(11), pages 1841-1852.
- Zhang, Yixing & Feng, Fei & Wang, Shunli & Meng, Jinhao & Xie, Jiale & Ling, Rui & Yin, Hongpeng & Zhang, Ke & Chai, Yi, 2023. "Joint nonlinear-drift-driven Wiener process-Markov chain degradation switching model for adaptive online predicting lithium-ion battery remaining useful life," Applied Energy, Elsevier, vol. 341(C).
- Guo, Fei & Wu, Xiongwei & Liu, Lili & Ye, Jilei & Wang, Tao & Fu, Lijun & Wu, Yuping, 2023. "Prediction of remaining useful life and state of health of lithium batteries based on time series feature and Savitzky-Golay filter combined with gated recurrent unit neural network," Energy, Elsevier, vol. 270(C).
- Chen, Zewang & Shi, Na & Ji, Yufan & Niu, Mu & Wang, Youren, 2021. "Lithium-ion batteries remaining useful life prediction based on BLS-RVM," Energy, Elsevier, vol. 234(C).
- Zhang, Qisong & Yang, Lin & Guo, Wenchao & Qiang, Jiaxi & Peng, Cheng & Li, Qinyi & Deng, Zhongwei, 2022. "A deep learning method for lithium-ion battery remaining useful life prediction based on sparse segment data via cloud computing system," Energy, Elsevier, vol. 241(C).
- Semeraro, Concetta & Caggiano, Mariateresa & Olabi, Abdul-Ghani & Dassisti, Michele, 2022. "Battery monitoring and prognostics optimization techniques: Challenges and opportunities," Energy, Elsevier, vol. 255(C).
- Rauf, Huzaifa & Khalid, Muhammad & Arshad, Naveed, 2022. "Machine learning in state of health and remaining useful life estimation: Theoretical and technological development in battery degradation modelling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
- Lyu, Chao & Lai, Qingzhi & Ge, Tengfei & Yu, Honghai & Wang, Lixin & Ma, Na, 2017. "A lead-acid battery's remaining useful life prediction by using electrochemical model in the Particle Filtering framework," Energy, Elsevier, vol. 120(C), pages 975-984.
- Chen, Lin & Ding, Yunhui & Liu, Bohao & Wu, Shuxiao & Wang, Yaodong & Pan, Haihong, 2022. "Remaining useful life prediction of lithium-ion battery using a novel particle filter framework with grey neural network," Energy, Elsevier, vol. 244(PA).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Liyuan Shao & Yong Zhang & Xiujuan Zheng & Xin He & Yufeng Zheng & Zhiwei Liu, 2023. "A Review of Remaining Useful Life Prediction for Energy Storage Components Based on Stochastic Filtering Methods," Energies, MDPI, vol. 16(3), pages 1-22, February.
- Du, Jingcai & Zhang, Caiping & Li, Shuowei & Zhang, Linjing & Zhang, Weige, 2024. "Two-stage prediction method for capacity aging trajectories of lithium-ion batteries based on Siamese-convolutional neural network," Energy, Elsevier, vol. 295(C).
- Liu, Yunpeng & Hou, Bo & Ahmed, Moin & Mao, Zhiyu & Feng, Jiangtao & Chen, Zhongwei, 2024. "A hybrid deep learning approach for remaining useful life prediction of lithium-ion batteries based on discharging fragments," Applied Energy, Elsevier, vol. 358(C).
- Zhao, Bo & Zhang, Weige & Zhang, Yanru & Zhang, Caiping & Zhang, Chi & Zhang, Junwei, 2024. "Research on the remaining useful life prediction method for lithium-ion batteries by fusion of feature engineering and deep learning," Applied Energy, Elsevier, vol. 358(C).
- Wei, Meng & Balaya, Palani & Ye, Min & Song, Ziyou, 2022. "Remaining useful life prediction for 18650 sodium-ion batteries based on incremental capacity analysis," Energy, Elsevier, vol. 261(PA).
- Tang, Aihua & Jiang, Yihan & Nie, Yuwei & Yu, Quanqing & Shen, Weixiang & Pecht, Michael G., 2023. "Health and lifespan prediction considering degradation patterns of lithium-ion batteries based on transferable attention neural network," Energy, Elsevier, vol. 279(C).
- Pang, Hui & Chen, Kaiqiang & Geng, Yuanfei & Wu, Longxing & Wang, Fengbin & Liu, Jiahao, 2024. "Accurate capacity and remaining useful life prediction of lithium-ion batteries based on improved particle swarm optimization and particle filter," Energy, Elsevier, vol. 293(C).
- Olabi, A.G. & Wilberforce, Tabbi & Sayed, Enas Taha & Abo-Khalil, Ahmed G. & Maghrabie, Hussein M. & Elsaid, Khaled & Abdelkareem, Mohammad Ali, 2022. "Battery energy storage systems and SWOT (strengths, weakness, opportunities, and threats) analysis of batteries in power transmission," Energy, Elsevier, vol. 254(PA).
- Guo, Junyu & Wan, Jia-Lun & Yang, Yan & Dai, Le & Tang, Aimin & Huang, Bangkui & Zhang, Fangfang & Li, He, 2023. "A deep feature learning method for remaining useful life prediction of drilling pumps," Energy, Elsevier, vol. 282(C).
- Li, Chuan & Zhang, Huahua & Ding, Ping & Yang, Shuai & Bai, Yun, 2023. "Deep feature extraction in lifetime prognostics of lithium-ion batteries: Advances, challenges and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
- Wang, Shuai & Ma, Hongyan & Zhang, Yingda & Li, Shengyan & He, Wei, 2023. "Remaining useful life prediction method of lithium-ion batteries is based on variational modal decomposition and deep learning integrated approach," Energy, Elsevier, vol. 282(C).
- Zhou, Yifei & Wang, Shunli & Xie, Yanxing & Shen, Xianfeng & Fernandez, Carlos, 2023. "Remaining useful life prediction and state of health diagnosis for lithium-ion batteries based on improved grey wolf optimization algorithm-deep extreme learning machine algorithm," Energy, Elsevier, vol. 285(C).
- Yue Ren & Chunhua Jin & Shu Fang & Li Yang & Zixuan Wu & Ziyang Wang & Rui Peng & Kaiye Gao, 2023. "A Comprehensive Review of Key Technologies for Enhancing the Reliability of Lithium-Ion Power Batteries," Energies, MDPI, vol. 16(17), pages 1-38, August.
- Das, Kaushik & Kumar, Roushan & Krishna, Anurup, 2024. "Analyzing electric vehicle battery health performance using supervised machine learning," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
- Wang, Huan & Li, Yan-Fu & Zhang, Ying, 2023. "Bioinspired spiking spatiotemporal attention framework for lithium-ion batteries state-of-health estimation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
- V. V. Ryazanov, 2021. "First-passage time and change of entropy," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 94(12), pages 1-19, December.
- Ester Vasta & Tommaso Scimone & Giovanni Nobile & Otto Eberhardt & Daniele Dugo & Massimiliano Maurizio De Benedetti & Luigi Lanuzza & Giuseppe Scarcella & Luca Patanè & Paolo Arena & Mario Cacciato, 2023. "Models for Battery Health Assessment: A Comparative Evaluation," Energies, MDPI, vol. 16(2), pages 1-34, January.
- Yang, Ruixin & Xiong, Rui & Ma, Suxiao & Lin, Xinfan, 2020. "Characterization of external short circuit faults in electric vehicle Li-ion battery packs and prediction using artificial neural networks," Applied Energy, Elsevier, vol. 260(C).
- Dai, Houde & Wang, Jiaxin & Huang, Yiyang & Lai, Yuan & Zhu, Liqi, 2024. "Lightweight state-of-health estimation of lithium-ion batteries based on statistical feature optimization," Renewable Energy, Elsevier, vol. 222(C).
- Guarino, Antonio & Trinchero, Riccardo & Canavero, Flavio & Spagnuolo, Giovanni, 2022. "A fast fuel cell parametric identification approach based on machine learning inverse models," Energy, Elsevier, vol. 239(PC).
More about this item
Keywords
Lifetime prediction; Standby system; Storage degradation; Nonlinear Wiener process; Li-ion batteries;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:282:y:2023:i:c:s0360544223018546. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.