IDEAS home Printed from https://ideas.repec.org/a/spr/aistmt/v60y2008i3p499-517.html
   My bibliography  Save this article

Bayesian hierarchical linear mixed models for additive smoothing splines

Author

Listed:
  • Dongchu Sun
  • Paul Speckman

Abstract

No abstract is available for this item.

Suggested Citation

  • Dongchu Sun & Paul Speckman, 2008. "Bayesian hierarchical linear mixed models for additive smoothing splines," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 60(3), pages 499-517, September.
  • Handle: RePEc:spr:aistmt:v:60:y:2008:i:3:p:499-517
    DOI: 10.1007/s10463-007-0127-3
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10463-007-0127-3
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10463-007-0127-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Carter, C.K. & Kohn, R., "undated". "Markov Chain Monte Carlo in Conditionally Gaussian State Space Models," Statistics Working Paper _003, Australian Graduate School of Management.
    2. Ludwig Fahrmeir & Stefan Lang, 2001. "Bayesian inference for generalized additive mixed models based on Markov random field priors," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 50(2), pages 201-220.
    3. Sally Wood & Robert Kohn & Tom Shively & Wenxin Jiang, 2002. "Model selection in spline nonparametric regression," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(1), pages 119-139, January.
    4. Paul L. Speckman, 2003. "Fully Bayesian spline smoothing and intrinsic autoregressive priors," Biometrika, Biometrika Trust, vol. 90(2), pages 289-302, June.
    5. Wong, Chi-ming & Kohn, Robert, 1996. "A Bayesian approach to additive semiparametric regression," Journal of Econometrics, Elsevier, vol. 74(2), pages 209-235, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yu Yue & Paul Speckman & Dongchu Sun, 2012. "Priors for Bayesian adaptive spline smoothing," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 64(3), pages 577-613, June.
    2. Tong, Xiaojun & He, Zhuoqiong Chong & Sun, Dongchu, 2018. "Estimating Chinese Treasury yield curves with Bayesian smoothing splines," Econometrics and Statistics, Elsevier, vol. 8(C), pages 94-124.
    3. Cheng, Chin-I. & Speckman, Paul L., 2012. "Bayesian smoothing spline analysis of variance," Computational Statistics & Data Analysis, Elsevier, vol. 56(12), pages 3945-3958.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Stefan Lang & Eva-Maria Pronk & Ludwig Fahrmeir, 2002. "Function estimation with locally adaptive dynamic models," Computational Statistics, Springer, vol. 17(4), pages 479-499, December.
    2. Peter F. Craigmile & Peter Guttorp, 2022. "Rejoinder to the discussion on “A combined estimate of global temperature”," Environmetrics, John Wiley & Sons, Ltd., vol. 33(3), May.
    3. Yu Yue & Paul Speckman & Dongchu Sun, 2012. "Priors for Bayesian adaptive spline smoothing," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 64(3), pages 577-613, June.
    4. Cheng, Chin-I. & Speckman, Paul L., 2012. "Bayesian smoothing spline analysis of variance," Computational Statistics & Data Analysis, Elsevier, vol. 56(12), pages 3945-3958.
    5. Kuhlenkasper, Torben & Kauermann, Göran, 2010. "Female wage profiles: An additive mixed model approach to employment breaks due to childcare," HWWI Research Papers 2-18, Hamburg Institute of International Economics (HWWI).
    6. Lawrence N Kazembe, 2013. "A Bayesian Two Part Model Applied to Analyze Risk Factors of Adult Mortality with Application to Data from Namibia," PLOS ONE, Public Library of Science, vol. 8(9), pages 1-10, September.
    7. Rouven E. Haschka & Helmut Herwartz, 2022. "Endogeneity in pharmaceutical knowledge generation: An instrument‐free copula approach for Poisson frontier models," Journal of Economics & Management Strategy, Wiley Blackwell, vol. 31(4), pages 942-960, November.
    8. Jing Cao & Chong Z. He & Kimberly M. Suedkamp Wells & Joshua J. Millspaugh & Mark R. Ryan, 2009. "Modeling Age and Nest-Specific Survival Using a Hierarchical Bayesian Approach," Biometrics, The International Biometric Society, vol. 65(4), pages 1052-1062, December.
    9. Shuxi Zeng & Elizabeth C. Lange & Elizabeth A. Archie & Fernando A. Campos & Susan C. Alberts & Fan Li, 2023. "A Causal Mediation Model for Longitudinal Mediators and Survival Outcomes with an Application to Animal Behavior," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 28(2), pages 197-218, June.
    10. Shively, Thomas S. & Kockelman, Kara & Damien, Paul, 2010. "A Bayesian semi-parametric model to estimate relationships between crash counts and roadway characteristics," Transportation Research Part B: Methodological, Elsevier, vol. 44(5), pages 699-715, June.
    11. Tong, Xiaojun & He, Zhuoqiong Chong & Sun, Dongchu, 2018. "Estimating Chinese Treasury yield curves with Bayesian smoothing splines," Econometrics and Statistics, Elsevier, vol. 8(C), pages 94-124.
    12. Aliaksandr Hubin & Geir Storvik, 2024. "Sparse Bayesian Neural Networks: Bridging Model and Parameter Uncertainty through Scalable Variational Inference," Mathematics, MDPI, vol. 12(6), pages 1-28, March.
    13. Rasheed A. Adeyemi & Temesgen Zewotir & Shaun Ramroop, 2016. "Semiparametric Multinomial Ordinal Model to Analyze Spatial Patterns of Child Birth Weight in Nigeria," IJERPH, MDPI, vol. 13(11), pages 1-22, November.
    14. David O'Donnell & Alastair Rushworth & Adrian W. Bowman & E. Marian Scott & Mark Hallard, 2014. "Flexible regression models over river networks," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 63(1), pages 47-63, January.
    15. Håvard Rue & Ingelin Steinsland & Sveinung Erland, 2004. "Approximating hidden Gaussian Markov random fields," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 66(4), pages 877-892, November.
    16. Masuda, Hiroki & Yoshida, Nakahiro, 2004. "An application of the double Edgeworth expansion to a filtering model with Gaussian limit," Statistics & Probability Letters, Elsevier, vol. 70(1), pages 37-48, October.
    17. Tamvada, Jagannadha Pawan, 2010. "The Dynamics of Self-employment in a Developing Country: Evidence from India," MPRA Paper 20042, University Library of Munich, Germany.
    18. Congdon, Peter, 2006. "A model for non-parametric spatially varying regression effects," Computational Statistics & Data Analysis, Elsevier, vol. 50(2), pages 422-445, January.
    19. Gerhard Tutz & Harald Binder, 2006. "Generalized Additive Modeling with Implicit Variable Selection by Likelihood-Based Boosting," Biometrics, The International Biometric Society, vol. 62(4), pages 961-971, December.
    20. Simon N. Wood & Zheyuan Li & Gavin Shaddick & Nicole H. Augustin, 2017. "Generalized Additive Models for Gigadata: Modeling the U.K. Black Smoke Network Daily Data," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(519), pages 1199-1210, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:aistmt:v:60:y:2008:i:3:p:499-517. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.