IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0159173.html
   My bibliography  Save this article

Social and Demographic Factors Associated with Morbidities in Young Children in Egypt: A Bayesian Geo-Additive Semi-Parametric Multinomial Model

Author

Listed:
  • Khaled Khatab
  • Oyelola Adegboye
  • Taofeeq Ibn Mohammed

Abstract

Background: Globally, the burden of mortality in children, especially in poor developing countries, is alarming and has precipitated concern and calls for concerted efforts in combating such health problems. Examples of diseases that contribute to this burden of mortality include diarrhoea, cough, fever, and the overlap between these illnesses, causing childhood morbidity and mortality. Methods: To gain insight into these health issues, we employed the 2008 Demographic and Health Survey Data of Egypt, which recorded details from 10,872 children under five. This data focused on the demographic and socio-economic characteristics of household members. We applied a Bayesian multinomial model to assess the area-specific spatial effects and risk factors of co-morbidity of fever, diarrhoea and cough for children under the age of five. Results: The results showed that children under 20 months of age were more likely to have the three diseases (OR: 6.8; 95% CI: 4.6–10.2) than children between 20 and 40 months (OR: 2.14; 95% CI: 1.38–3.3). In multivariate Bayesian geo-additive models, the children of mothers who were over 20 years of age were more likely to have only cough (OR: 1.2; 95% CI: 0.9–1.5) and only fever (OR: 1.2; 95% CI: 0.91–1.51) compared with their counterparts. Spatial results showed that the North-eastern region of Egypt has a higher incidence than most of other regions. Conclusions: This study showed geographic patterns of Egyptian governorates in the combined prevalence of morbidity among Egyptian children. It is obvious that the Nile Delta, Upper Egypt, and south-eastern Egypt have high rates of diseases and are more affected. Therefore, more attention is needed in these areas.

Suggested Citation

  • Khaled Khatab & Oyelola Adegboye & Taofeeq Ibn Mohammed, 2016. "Social and Demographic Factors Associated with Morbidities in Young Children in Egypt: A Bayesian Geo-Additive Semi-Parametric Multinomial Model," PLOS ONE, Public Library of Science, vol. 11(7), pages 1-10, July.
  • Handle: RePEc:plo:pone00:0159173
    DOI: 10.1371/journal.pone.0159173
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0159173
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0159173&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0159173?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Ludwig Fahrmeir & Stefan Lang, 2001. "Bayesian inference for generalized additive mixed models based on Markov random field priors," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 50(2), pages 201-220.
    2. Miller, Peter & Hirschhorn, Norbert, 1995. "The effect of a national control of diarrheal diseases program on mortality: The case of Egypt," Social Science & Medicine, Elsevier, vol. 40(10), pages 1-30, May.
    3. Kandala, Ngianga-Bakwin & Magadi, Monica Akinyi & Madise, Nyovani Janet, 2006. "An investigation of district spatial variations of childhood diarrhoea and fever morbidity in Malawi," Social Science & Medicine, Elsevier, vol. 62(5), pages 1138-1152, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kandala, Ngianga-Bakwin & Emina, Jacques B. & Nzita, Paul Denis K. & Cappuccio, Francesco P., 2009. "Diarrhoea, acute respiratory infection, and fever among children in the Democratic Republic of Congo," Social Science & Medicine, Elsevier, vol. 68(9), pages 1728-1736, May.
    2. Simon N. Wood & Natalya Pya & Benjamin Säfken, 2016. "Smoothing Parameter and Model Selection for General Smooth Models," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(516), pages 1548-1563, October.
    3. Thomas A. Murray & Brian P. Hobbs & Theodore C. Lystig & Bradley P. Carlin, 2014. "Semiparametric Bayesian commensurate survival model for post-market medical device surveillance with non-exchangeable historical data," Biometrics, The International Biometric Society, vol. 70(1), pages 185-191, March.
    4. Lawrence N Kazembe, 2013. "A Bayesian Two Part Model Applied to Analyze Risk Factors of Adult Mortality with Application to Data from Namibia," PLOS ONE, Public Library of Science, vol. 8(9), pages 1-10, September.
    5. Few, Roger & Lake, Iain & Hunter, Paul R. & Tran, Pham Gia, 2013. "Seasonality, disease and behavior: Using multiple methods to explore socio-environmental health risks in the Mekong Delta," Social Science & Medicine, Elsevier, vol. 80(C), pages 1-9.
    6. Rouven E. Haschka & Helmut Herwartz, 2022. "Endogeneity in pharmaceutical knowledge generation: An instrument‐free copula approach for Poisson frontier models," Journal of Economics & Management Strategy, Wiley Blackwell, vol. 31(4), pages 942-960, November.
    7. Shuxi Zeng & Elizabeth C. Lange & Elizabeth A. Archie & Fernando A. Campos & Susan C. Alberts & Fan Li, 2023. "A Causal Mediation Model for Longitudinal Mediators and Survival Outcomes with an Application to Animal Behavior," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 28(2), pages 197-218, June.
    8. Xin Fang & Bo Fang & Chunfang Wang & Tian Xia & Matteo Bottai & Fang Fang & Yang Cao, 2019. "Comparison of Frequentist and Bayesian Generalized Additive Models for Assessing the Association between Daily Exposure to Fine Particles and Respiratory Mortality: A Simulation Study," IJERPH, MDPI, vol. 16(5), pages 1-20, March.
    9. Peter Hangoma & Arild Aakvik & Bjarne Robberstad, 2017. "Explaining changes in child health inequality in the run up to the 2015 Millennium Development Goals (MDGs): The case of Zambia," PLOS ONE, Public Library of Science, vol. 12(2), pages 1-21, February.
    10. Eric Gilman & Milani Chaloupka & Brett Wiedoff & Jeremy Willson, 2014. "Mitigating Seabird Bycatch during Hauling by Pelagic Longline Vessels," PLOS ONE, Public Library of Science, vol. 9(1), pages 1-12, January.
    11. Serinaldi, Francesco, 2011. "Distributional modeling and short-term forecasting of electricity prices by Generalized Additive Models for Location, Scale and Shape," Energy Economics, Elsevier, vol. 33(6), pages 1216-1226.
    12. Belitz, Christiane & Lang, Stefan, 2008. "Simultaneous selection of variables and smoothing parameters in structured additive regression models," Computational Statistics & Data Analysis, Elsevier, vol. 53(1), pages 61-81, September.
    13. Volker Schmid & Leonhard Held, 2004. "Bayesian Extrapolation of Space–Time Trends in Cancer Registry Data," Biometrics, The International Biometric Society, vol. 60(4), pages 1034-1042, December.
    14. Birgit Schrödle & Leonhard Held, 2011. "A primer on disease mapping and ecological regression using $${\texttt{INLA}}$$," Computational Statistics, Springer, vol. 26(2), pages 241-258, June.
    15. Aliaksandr Hubin & Geir Storvik, 2024. "Sparse Bayesian Neural Networks: Bridging Model and Parameter Uncertainty through Scalable Variational Inference," Mathematics, MDPI, vol. 12(6), pages 1-28, March.
    16. Klein, Nadja & Herwartz, Helmut & Kneib, Thomas, 2020. "Modelling regional patterns of inefficiency: A Bayesian approach to geoadditive panel stochastic frontier analysis with an application to cereal production in England and Wales," Journal of Econometrics, Elsevier, vol. 214(2), pages 513-539.
    17. Rasheed A. Adeyemi & Temesgen Zewotir & Shaun Ramroop, 2016. "Semiparametric Multinomial Ordinal Model to Analyze Spatial Patterns of Child Birth Weight in Nigeria," IJERPH, MDPI, vol. 13(11), pages 1-22, November.
    18. David O'Donnell & Alastair Rushworth & Adrian W. Bowman & E. Marian Scott & Mark Hallard, 2014. "Flexible regression models over river networks," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 63(1), pages 47-63, January.
    19. Khaled Khatab & Maruf A Raheem & Benn Sartorius & Mubarak Ismail, 2019. "Prevalence and risk factors for child labour and violence against children in Egypt using Bayesian geospatial modelling with multiple imputation," PLOS ONE, Public Library of Science, vol. 14(5), pages 1-20, May.
    20. Håvard Rue & Ingelin Steinsland & Sveinung Erland, 2004. "Approximating hidden Gaussian Markov random fields," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 66(4), pages 877-892, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0159173. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.