IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v126y2016i7p1901-1931.html
   My bibliography  Save this article

Importance sampling and statistical Romberg method for Lévy processes

Author

Listed:
  • Alaya, Mohamed Ben
  • Hajji, Kaouther
  • Kebaier, Ahmed

Abstract

An important family of stochastic processes arising in many areas of applied probability is the class of Lévy processes. Generally, such processes are not simulatable especially for those with infinite activity. In practice, it is common to approximate them by truncating the jumps at some cut-off size ε (ε↘0). This procedure leads us to consider a simulatable compound Poisson process. This paper first introduces, for this setting, the statistical Romberg method to improve the complexity of the classical Monte Carlo method. Roughly speaking, we use many sample paths with a coarse cut-off εβ, β∈(0,1), and few additional sample paths with a fine cut-off ε. Central limit theorems of Lindeberg–Feller type for both Monte Carlo and statistical Romberg method for the inferred errors depending on the parameter ε are proved with explicit formulas for the limit variances. This leads to an accurate description of the optimal choice of parameters. Afterwards, the authors propose a stochastic approximation method in order to find the optimal measure change by Esscher transform for Lévy processes with Monte Carlo and statistical Romberg importance sampling variance reduction. Furthermore, we develop new adaptive Monte Carlo and statistical Romberg algorithms and prove the associated central limit theorems. Finally, numerical simulations are processed to illustrate the efficiency of the adaptive statistical Romberg method that reduces at the same time the variance and the computational effort associated to the effective computation of option prices when the underlying asset process follows an exponential pure jump CGMY model.

Suggested Citation

  • Alaya, Mohamed Ben & Hajji, Kaouther & Kebaier, Ahmed, 2016. "Importance sampling and statistical Romberg method for Lévy processes," Stochastic Processes and their Applications, Elsevier, vol. 126(7), pages 1901-1931.
  • Handle: RePEc:eee:spapps:v:126:y:2016:i:7:p:1901-1931
    DOI: 10.1016/j.spa.2015.12.008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304414915003257
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spa.2015.12.008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kohatsu-Higa, Arturo & Tankov, Peter, 2010. "Jump-adapted discretization schemes for Lévy-driven SDEs," Stochastic Processes and their Applications, Elsevier, vol. 120(11), pages 2258-2285, November.
    2. Mike Giles & Yuan Xia, 2014. "Multilevel Monte Carlo For Exponential L\'{e}vy Models," Papers 1403.5309, arXiv.org, revised May 2017.
    3. Fang, Fang & Oosterlee, Kees, 2008. "A Novel Pricing Method For European Options Based On Fourier-Cosine Series Expansions," MPRA Paper 9319, University Library of Munich, Germany.
    4. Jérémy Poirot & Peter Tankov, 2006. "Monte Carlo Option Pricing for Tempered Stable (CGMY) Processes," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 13(4), pages 327-344, December.
    5. Paul Glasserman & Philip Heidelberger & Perwez Shahabuddin, 1999. "Asymptotically Optimal Importance Sampling and Stratification for Pricing Path‐Dependent Options," Mathematical Finance, Wiley Blackwell, vol. 9(2), pages 117-152, April.
    6. Michael B. Giles, 2008. "Multilevel Monte Carlo Path Simulation," Operations Research, INFORMS, vol. 56(3), pages 607-617, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zheng, Jing & Lin, Zhengyan & Tong, Changqing & Ye, Rendao, 2017. "New methods of simulating Lévy processes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 473(C), pages 461-466.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kahalé, Nabil, 2020. "General multilevel Monte Carlo methods for pricing discretely monitored Asian options," European Journal of Operational Research, Elsevier, vol. 287(2), pages 739-748.
    2. Nabil Kahale, 2018. "General multilevel Monte Carlo methods for pricing discretely monitored Asian options," Papers 1805.09427, arXiv.org, revised Sep 2018.
    3. Jorge Ignacio Gonz'alez C'azares & Aleksandar Mijatovi'c & Ger'onimo Uribe Bravo, 2018. "Geometrically Convergent Simulation of the Extrema of L\'{e}vy Processes," Papers 1810.11039, arXiv.org, revised Jun 2021.
    4. Genin, Adrien & Tankov, Peter, 2020. "Optimal importance sampling for Lévy processes," Stochastic Processes and their Applications, Elsevier, vol. 130(1), pages 20-46.
    5. Adrien Genin & Peter Tankov, 2016. "Optimal importance sampling for L\'evy Processes," Papers 1608.04621, arXiv.org.
    6. Jean-Philippe Aguilar, 2021. "The value of power-related options under spectrally negative Lévy processes," Review of Derivatives Research, Springer, vol. 24(2), pages 173-196, July.
    7. Antonis Papapantoleon & John Schoenmakers & David Skovmand, 2011. "Efficient and accurate log-L\'evy approximations to L\'evy driven LIBOR models," Papers 1106.0866, arXiv.org, revised Jan 2012.
    8. Arturo Kohatsu-Higa & Salvador Ortiz-Latorre & Peter Tankov, 2012. "Optimal simulation schemes for L\'evy driven stochastic differential equations," Papers 1204.4877, arXiv.org.
    9. Jorge Ignacio Gonz'alez C'azares & Aleksandar Mijatovi'c, 2021. "Monte Carlo algorithm for the extrema of tempered stable processes," Papers 2103.15310, arXiv.org, revised Dec 2022.
    10. Jorge Gonz'alez C'azares & Aleksandar Mijatovi'c, 2020. "Simulation of the drawdown and its duration in L\'{e}vy models via stick-breaking Gaussian approximation," Papers 2011.06618, arXiv.org, revised Mar 2021.
    11. Nabil Kahalé, 2020. "Randomized Dimension Reduction for Monte Carlo Simulations," Management Science, INFORMS, vol. 66(3), pages 1421-1439, March.
    12. Jorge González Cázares & Aleksandar Mijatović, 2022. "Simulation of the drawdown and its duration in Lévy models via stick-breaking Gaussian approximation," Finance and Stochastics, Springer, vol. 26(4), pages 671-732, October.
    13. Jean-Philippe Aguilar, 2019. "The value of power-related options under spectrally negative L\'evy processes," Papers 1910.07971, arXiv.org, revised Jan 2021.
    14. Han, Chulwoo & Park, Frank C., 2022. "A geometric framework for covariance dynamics," Journal of Banking & Finance, Elsevier, vol. 134(C).
    15. Yi Chen & Jing Dong & Hao Ni, 2021. "ɛ-Strong Simulation of Fractional Brownian Motion and Related Stochastic Differential Equations," Mathematics of Operations Research, INFORMS, vol. 46(2), pages 559-594, May.
    16. Damir Filipovi'c & Martin Larsson, 2017. "Polynomial Jump-Diffusion Models," Papers 1711.08043, arXiv.org, revised Jul 2019.
    17. Jian Wang & Xiang Gao & Zhili Sun, 2021. "A Multilevel Simulation Method for Time-Variant Reliability Analysis," Sustainability, MDPI, vol. 13(7), pages 1-16, March.
    18. Kathrin Glau & Daniel Kressner & Francesco Statti, 2019. "Low-rank tensor approximation for Chebyshev interpolation in parametric option pricing," Papers 1902.04367, arXiv.org.
    19. Ahmed Kebaier & J'er^ome Lelong, 2015. "Coupling Importance Sampling and Multilevel Monte Carlo using Sample Average Approximation," Papers 1510.03590, arXiv.org, revised Jul 2017.
    20. Bardgett, Chris & Gourier, Elise & Leippold, Markus, 2019. "Inferring volatility dynamics and risk premia from the S&P 500 and VIX markets," Journal of Financial Economics, Elsevier, vol. 131(3), pages 593-618.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:126:y:2016:i:7:p:1901-1931. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.