IDEAS home Printed from https://ideas.repec.org/a/eee/insuma/v52y2013i3p421-434.html
   My bibliography  Save this article

Control variates and conditional Monte Carlo for basket and Asian options

Author

Listed:
  • Dingeç, Kemal Dinçer
  • Hörmann, Wolfgang

Abstract

A new, very efficient and fairly simple simulation method for European basket and Asian options under the geometric Brownian motion assumption is presented. It is based on a new control variate method that uses the closed form of the expected payoff conditional on the assumption that the geometric average of all prices is larger than the strike price. The combination of that new control variate with conditional Monte Carlo and quadratic control variates leads to the newly proposed algorithm. Numerical experiments show that the new algorithm is more efficient than the classical control variate method using the geometric price.

Suggested Citation

  • Dingeç, Kemal Dinçer & Hörmann, Wolfgang, 2013. "Control variates and conditional Monte Carlo for basket and Asian options," Insurance: Mathematics and Economics, Elsevier, vol. 52(3), pages 421-434.
  • Handle: RePEc:eee:insuma:v:52:y:2013:i:3:p:421-434
    DOI: 10.1016/j.insmatheco.2013.03.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167668713000309
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.insmatheco.2013.03.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kemna, A. G. Z. & Vorst, A. C. F., 1990. "A pricing method for options based on average asset values," Journal of Banking & Finance, Elsevier, vol. 14(1), pages 113-129, March.
    2. Pierre Étoré & Benjamin Jourdain, 2010. "Adaptive Optimal Allocation in Stratified Sampling Methods," Methodology and Computing in Applied Probability, Springer, vol. 12(3), pages 335-360, September.
    3. Deelstra, G. & Liinev, J. & Vanmaele, M., 2004. "Pricing of arithmetic basket options by conditioning," Insurance: Mathematics and Economics, Elsevier, vol. 34(1), pages 55-77, February.
    4. P. Pellizzari, 2001. "Efficient Monte Carlo pricing of European options¶using mean value control variates," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 24(2), pages 107-126, November.
    5. Griselda Deelstra & Jan Liinev & Michèle Vanmaele, 2004. "Pricing of arithmetic basket options by conditioning," ULB Institutional Repository 2013/7600, ULB -- Universite Libre de Bruxelles.
    6. Paolo Guasoni & Scott Robertson, 2008. "Optimal importance sampling with explicit formulas in continuous time," Finance and Stochastics, Springer, vol. 12(1), pages 1-19, January.
    7. Paul Glasserman & Philip Heidelberger & Perwez Shahabuddin, 1999. "Asymptotically Optimal Importance Sampling and Stratification for Pricing Path‐Dependent Options," Mathematical Finance, Wiley Blackwell, vol. 9(2), pages 117-152, April.
    8. Pierre L'Ecuyer & Christiane Lemieux, 2000. "Variance Reduction via Lattice Rules," Management Science, INFORMS, vol. 46(9), pages 1214-1235, September.
    9. Xiaoqun Wang & Ian H. Sloan, 2011. "Quasi-Monte Carlo Methods in Financial Engineering: An Equivalence Principle and Dimension Reduction," Operations Research, INFORMS, vol. 59(1), pages 80-95, February.
    10. Boyle, Phelim & Potapchik, Alexander, 2008. "Prices and sensitivities of Asian options: A survey," Insurance: Mathematics and Economics, Elsevier, vol. 42(1), pages 189-211, February.
    11. Michael Curran, 1994. "Valuing Asian and Portfolio Options by Conditioning on the Geometric Mean Price," Management Science, INFORMS, vol. 40(12), pages 1705-1711, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shiraya, Kenichiro & Takahashi, Akihiko, 2017. "A general control variate method for multi-dimensional SDEs: An application to multi-asset options under local stochastic volatility with jumps models in finance," European Journal of Operational Research, Elsevier, vol. 258(1), pages 358-371.
    2. Yijuan Liang & Xiuchuan Xu, 2019. "Variance and Dimension Reduction Monte Carlo Method for Pricing European Multi-Asset Options with Stochastic Volatilities," Sustainability, MDPI, vol. 11(3), pages 1-21, February.
    3. Geon Ho Choe & Minseok Kim, 2021. "Closed‐form lower bounds for the price of arithmetic average Asian options by multiple conditioning," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 41(12), pages 1916-1932, December.
    4. Kenichiro Shiraya & Akihiko Takahashi, 2016. "A General Control Variate Method for Multi-dimensional SDEs: An Application to Multi-asset Options under Local Stochastic Volatility with Jumps Models in Finance (Subsequently published in "Europ," CARF F-Series CARF-F-382, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo, revised Sep 2016.
    5. Kenichiro Shiraya & Akihiko Takahashi, 2016. "A General Control Variate Method for Multi-dimensional SDEs: An Application to Multi-asset Options under Local Stochastic Volatility with Jumps Models in Finance," CIRJE F-Series CIRJE-F-1007, CIRJE, Faculty of Economics, University of Tokyo.
    6. Ortiz-Gracia, Luis, 2020. "Expected shortfall computation with multiple control variates," Applied Mathematics and Computation, Elsevier, vol. 373(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jinke Zhou & Xiaolu Wang, 2008. "Accurate closed‐form approximation for pricing Asian and basket options," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 24(4), pages 343-358, July.
    2. Ng, Andrew C.Y. & Li, Johnny Siu-Hang & Chan, Wai-Sum, 2013. "Pricing options on stocks denominated in different currencies: Theory and illustrations," The North American Journal of Economics and Finance, Elsevier, vol. 26(C), pages 339-354.
    3. Leccadito, Arturo & Paletta, Tommaso & Tunaru, Radu, 2016. "Pricing and hedging basket options with exact moment matching," Insurance: Mathematics and Economics, Elsevier, vol. 69(C), pages 59-69.
    4. Jaehyuk Choi, 2018. "Sum of all Black–Scholes–Merton models: An efficient pricing method for spread, basket, and Asian options," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 38(6), pages 627-644, June.
    5. Zhang, Ling & Lai, Yongzeng & Zhang, Shuhua & Li, Lin, 2019. "Efficient control variate methods with applications to exotic options pricing under subordinated Brownian motion models," The North American Journal of Economics and Finance, Elsevier, vol. 47(C), pages 602-621.
    6. Yijuan Liang & Xiuchuan Xu, 2019. "Variance and Dimension Reduction Monte Carlo Method for Pricing European Multi-Asset Options with Stochastic Volatilities," Sustainability, MDPI, vol. 11(3), pages 1-21, February.
    7. Georges Dionne & Genevieve Gauthier & Nadia Ouertani & Nabil Tahani, 2011. "Heterogeneous Basket Options Pricing Using Analytical Approximations," Multinational Finance Journal, Multinational Finance Journal, vol. 15(1-2), pages 47-85, March - J.
    8. Hatem Ben-Ameur & Michèle Breton & Pierre L'Ecuyer, 2002. "A Dynamic Programming Procedure for Pricing American-Style Asian Options," Management Science, INFORMS, vol. 48(5), pages 625-643, May.
    9. Xiaoqun Wang & Ken Seng Tan, 2013. "Pricing and Hedging with Discontinuous Functions: Quasi-Monte Carlo Methods and Dimension Reduction," Management Science, INFORMS, vol. 59(2), pages 376-389, July.
    10. Xu, Guoping & Zheng, Harry, 2009. "Approximate basket options valuation for a jump-diffusion model," Insurance: Mathematics and Economics, Elsevier, vol. 45(2), pages 188-194, October.
    11. Louis-Pierre Arguin & Nien-Lin Liu & Tai-Ho Wang, 2018. "Most-Likely-Path In Asian Option Pricing Under Local Volatility Models," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 21(05), pages 1-32, August.
    12. Elçin Çetinkaya & Aurélie Thiele, 2016. "A moment matching approach to log-normal portfolio optimization," Computational Management Science, Springer, vol. 13(4), pages 501-520, October.
    13. Dan Pirjol & Lingjiong Zhu, 2017. "Asymptotics for the Discrete-Time Average of the Geometric Brownian Motion and Asian Options," Papers 1706.09659, arXiv.org.
    14. Nabil Kahalé, 2020. "Randomized Dimension Reduction for Monte Carlo Simulations," Management Science, INFORMS, vol. 66(3), pages 1421-1439, March.
    15. Vanmaele, Michele & Deelstra, Griselda & Liinev, Jan, 2004. "Approximation of stop-loss premiums involving sums of lognormals by conditioning on two variables," Insurance: Mathematics and Economics, Elsevier, vol. 35(2), pages 343-367, October.
    16. Guoping Xu & Harry Zheng, 2012. "Lower Bound Approximation to Basket Option Values for Local Volatility Jump-Diffusion Models," Papers 1212.3147, arXiv.org, revised Oct 2013.
    17. Ping Wu & Robert J. Elliott, 2017. "A simple efficient approximation to price basket stock options with volatility smile," Annals of Finance, Springer, vol. 13(1), pages 1-29, February.
    18. Kahalé, Nabil, 2020. "General multilevel Monte Carlo methods for pricing discretely monitored Asian options," European Journal of Operational Research, Elsevier, vol. 287(2), pages 739-748.
    19. Grzegorz Darkiewicz & Griselda Deelstra & Jan Dhaene & Tom Hoedemakers & Michèle Vanmaele, 2009. "Bounds for Right Tails of Deterministic and Stochastic Sums of Random Variables," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 76(4), pages 847-866, December.
    20. Louis-Pierre Arguin & Nien-Lin Liu & Tai-Ho Wang, 2017. "Most-likely-path in Asian option pricing under local volatility models," Papers 1706.02408, arXiv.org, revised Aug 2018.

    More about this item

    Keywords

    Basket options; Asian options; Monte Carlo simulation; Control variate; Conditional Monte Carlo;
    All these keywords.

    JEL classification:

    • G13 - Financial Economics - - General Financial Markets - - - Contingent Pricing; Futures Pricing
    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General
    • C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:insuma:v:52:y:2013:i:3:p:421-434. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/505554 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.