IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i5p845-d210873.html
   My bibliography  Save this article

Optimal Operating Point Determination Method Design for Range-Extended Electric Vehicles Based on Real Driving Tests

Author

Listed:
  • Gye-Seong Lee

    (Industrial Technology (Robotics), Korea University of Science and Technology, 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, Korea
    EV Components & Materials R&D Group, Korea Institute of Industrial Technology, 6 Cheomdan-gwagiro 208 Beon-gil, Buk-gu, Gwangju 61012, Korea)

  • Dong-Hyun Kim

    (EV Components & Materials R&D Group, Korea Institute of Industrial Technology, 6 Cheomdan-gwagiro 208 Beon-gil, Buk-gu, Gwangju 61012, Korea)

  • Jong-Ho Han

    (EV Components & Materials R&D Group, Korea Institute of Industrial Technology, 6 Cheomdan-gwagiro 208 Beon-gil, Buk-gu, Gwangju 61012, Korea)

  • Myeong-Hwan Hwang

    (EV Components & Materials R&D Group, Korea Institute of Industrial Technology, 6 Cheomdan-gwagiro 208 Beon-gil, Buk-gu, Gwangju 61012, Korea)

  • Hyun-Rok Cha

    (Industrial Technology (Robotics), Korea University of Science and Technology, 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, Korea
    EV Components & Materials R&D Group, Korea Institute of Industrial Technology, 6 Cheomdan-gwagiro 208 Beon-gil, Buk-gu, Gwangju 61012, Korea)

Abstract

In this study, a method to determine the optimal generator operating point is proposed to enhance the utilization of power resources in a range-extended electric vehicle (Re-EV). Currently, the Re-EV is being developed as one of the solutions to the short driving range and charge problem of electric vehicles (EVs). In particular, we present a method for flexibly determining the operating point of the generators mounted on Re-EVs based on the power consumption trends of the users. Our proposed method can address the problem in existing algorithms wherein all the available resources are not utilized, even though there is fuel remaining in the EV because the battery is not completely discharged. The proposed algorithm was developed based on data acquired through actual driving tests using an agricultural utility vehicle; these data can be applied to various power consumption patterns, including nonlinear consumption patterns. In addition, this algorithm can be applied to other types of Re-EV with different battery and generator specifications. We perform simulations and experiments to verify the proposed algorithm and the results demonstrate the effectiveness of the proposed approach compared with other existing methods.

Suggested Citation

  • Gye-Seong Lee & Dong-Hyun Kim & Jong-Ho Han & Myeong-Hwan Hwang & Hyun-Rok Cha, 2019. "Optimal Operating Point Determination Method Design for Range-Extended Electric Vehicles Based on Real Driving Tests," Energies, MDPI, vol. 12(5), pages 1-17, March.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:5:p:845-:d:210873
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/5/845/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/5/845/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Li, Junqiu & Wang, Yihe & Chen, Jianwen & Zhang, Xiaopeng, 2017. "Study on energy management strategy and dynamic modeling for auxiliary power units in range-extended electric vehicles," Applied Energy, Elsevier, vol. 194(C), pages 363-375.
    2. Du, Jiuyu & Chen, Jingfu & Song, Ziyou & Gao, Mingming & Ouyang, Minggao, 2017. "Design method of a power management strategy for variable battery capacities range-extended electric vehicles to improve energy efficiency and cost-effectiveness," Energy, Elsevier, vol. 121(C), pages 32-42.
    3. Hongwei Liu & Chantong Wang & Xin Zhao & Chong Guo, 2018. "An Adaptive-Equivalent Consumption Minimum Strategy for an Extended-Range Electric Bus Based on Target Driving Cycle Generation," Energies, MDPI, vol. 11(7), pages 1-26, July.
    4. Lihe Xi & Xin Zhang & Chuanyang Sun & Zexing Wang & Xiaosen Hou & Jibao Zhang, 2017. "Intelligent Energy Management Control for Extended Range Electric Vehicles Based on Dynamic Programming and Neural Network," Energies, MDPI, vol. 10(11), pages 1-18, November.
    5. Li, Junqiu & Jin, Xin & Xiong, Rui, 2017. "Multi-objective optimization study of energy management strategy and economic analysis for a range-extended electric bus," Applied Energy, Elsevier, vol. 194(C), pages 798-807.
    6. Cordiner, Stefano & Galeotti, Matteo & Mulone, Vincenzo & Nobile, Matteo & Rocco, Vittorio, 2016. "Trip-based SOC management for a plugin hybrid electric vehicle," Applied Energy, Elsevier, vol. 164(C), pages 891-905.
    7. Chen, Bo-Chiuan & Wu, Yuh-Yih & Tsai, Hsien-Chi, 2014. "Design and analysis of power management strategy for range extended electric vehicle using dynamic programming," Applied Energy, Elsevier, vol. 113(C), pages 1764-1774.
    8. Shabbir, Wassif & Evangelou, Simos A., 2014. "Real-time control strategy to maximize hybrid electric vehicle powertrain efficiency," Applied Energy, Elsevier, vol. 135(C), pages 512-522.
    9. Peng, Jiankun & He, Hongwen & Xiong, Rui, 2017. "Rule based energy management strategy for a series–parallel plug-in hybrid electric bus optimized by dynamic programming," Applied Energy, Elsevier, vol. 185(P2), pages 1633-1643.
    10. Chambon, Paul & Curran, Scott & Huff, Shean & Love, Lonnie & Post, Brian & Wagner, Robert & Jackson, Roderick & Green, Johney, 2017. "Development of a range-extended electric vehicle powertrain for an integrated energy systems research printed utility vehicle," Applied Energy, Elsevier, vol. 191(C), pages 99-110.
    11. Redelbach, Martin & Özdemir, Enver Doruk & Friedrich, Horst E., 2014. "Optimizing battery sizes of plug-in hybrid and extended range electric vehicles for different user types," Energy Policy, Elsevier, vol. 73(C), pages 158-168.
    12. Yong Tian & Bizhong Xia & Mingwang Wang & Wei Sun & Zhihui Xu, 2014. "Comparison Study on Two Model-Based Adaptive Algorithms for SOC Estimation of Lithium-Ion Batteries in Electric Vehicles," Energies, MDPI, vol. 7(12), pages 1-19, December.
    13. Xiang, Changle & Ding, Feng & Wang, Weida & He, Wei, 2017. "Energy management of a dual-mode power-split hybrid electric vehicle based on velocity prediction and nonlinear model predictive control," Applied Energy, Elsevier, vol. 189(C), pages 640-653.
    14. Wang, Bin & Xu, Jun & Cao, Binggang & Ning, Bo, 2017. "Adaptive mode switch strategy based on simulated annealing optimization of a multi-mode hybrid energy storage system for electric vehicles," Applied Energy, Elsevier, vol. 194(C), pages 596-608.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Aleš Hace, 2019. "The Advanced Control Approach based on SMC Design for the High-Fidelity Haptic Power Lever of a Small Hybrid Electric Aircraft," Energies, MDPI, vol. 12(15), pages 1-31, August.
    2. Xiao, B. & Ruan, J. & Yang, W. & Walker, P.D. & Zhang, N., 2021. "A review of pivotal energy management strategies for extended range electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    3. Jakub Lasocki & Artur Kopczyński & Paweł Krawczyk & Paweł Roszczyk, 2019. "Empirical Study on the Efficiency of an LPG-Supplied Range Extender for Electric Vehicles," Energies, MDPI, vol. 12(18), pages 1-23, September.
    4. Paweł Krawczyk & Artur Kopczyński & Jakub Lasocki, 2022. "Modeling and Simulation of Extended-Range Electric Vehicle with Control Strategy to Assess Fuel Consumption and CO 2 Emission for the Expected Driving Range," Energies, MDPI, vol. 15(12), pages 1-41, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiao, B. & Ruan, J. & Yang, W. & Walker, P.D. & Zhang, N., 2021. "A review of pivotal energy management strategies for extended range electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    2. Paweł Krawczyk & Artur Kopczyński & Jakub Lasocki, 2022. "Modeling and Simulation of Extended-Range Electric Vehicle with Control Strategy to Assess Fuel Consumption and CO 2 Emission for the Expected Driving Range," Energies, MDPI, vol. 15(12), pages 1-41, June.
    3. Liu, Hanwu & Lei, Yulong & Fu, Yao & Li, Xingzhong, 2022. "A novel hybrid-point-line energy management strategy based on multi-objective optimization for range-extended electric vehicle," Energy, Elsevier, vol. 247(C).
    4. Wang, Yaxin & Lou, Diming & Xu, Ning & Fang, Liang & Tan, Piqiang, 2021. "Energy management and emission control for range extended electric vehicles," Energy, Elsevier, vol. 236(C).
    5. Zhu, Tao & Wills, Richard G.A. & Lot, Roberto & Ruan, Haijun & Jiang, Zhihao, 2021. "Adaptive energy management of a battery-supercapacitor energy storage system for electric vehicles based on flexible perception and neural network fitting," Applied Energy, Elsevier, vol. 292(C).
    6. Hou, Daizheng & Sun, Qun & Bao, Chunjiang & Cheng, Xingqun & Guo, Hongqiang & Zhao, Ying, 2019. "An all-in-one design method for plug-in hybrid electric buses considering uncertain factor of driving cycles," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    7. Chen, Z. & Liu, Y. & Ye, M. & Zhang, Y. & Chen, Z. & Li, G., 2021. "A survey on key techniques and development perspectives of equivalent consumption minimisation strategy for hybrid electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    8. Ren, Guizhou & Wang, Jinzhong & Chen, Changlei & Wang, Haoran, 2021. "A variable-voltage ultra-capacitor/battery hybrid power source for extended range electric vehicle," Energy, Elsevier, vol. 231(C).
    9. Ye Yang & Youtong Zhang & Jingyi Tian & Si Zhang, 2018. "Research on a Plug-In Hybrid Electric Bus Energy Management Strategy Considering Drivability," Energies, MDPI, vol. 11(8), pages 1-22, August.
    10. Rezaei, A. & Burl, J.B. & Solouk, A. & Zhou, B. & Rezaei, M. & Shahbakhti, M., 2017. "Catch energy saving opportunity (CESO), an instantaneous optimal energy management strategy for series hybrid electric vehicles," Applied Energy, Elsevier, vol. 208(C), pages 655-665.
    11. Liu, Hui & Li, Xunming & Wang, Weida & Han, Lijin & Xiang, Changle, 2018. "Markov velocity predictor and radial basis function neural network-based real-time energy management strategy for plug-in hybrid electric vehicles," Energy, Elsevier, vol. 152(C), pages 427-444.
    12. Hong Zhang & Zhuang Xing & Jiajian Song & Qiangqiang Yang, 2018. "Development and Test Application of an Auxiliary Power-Integrated System," Energies, MDPI, vol. 11(1), pages 1-18, January.
    13. Geng, Wenran & Lou, Diming & Wang, Chen & Zhang, Tong, 2020. "A cascaded energy management optimization method of multimode power-split hybrid electric vehicles," Energy, Elsevier, vol. 199(C).
    14. Diming Lou & Yinghua Zhao & Liang Fang & Yuanzhi Tang & Caihua Zhuang, 2022. "Encoder–Decoder-Based Velocity Prediction Modelling for Passenger Vehicles Coupled with Driving Pattern Recognition," Sustainability, MDPI, vol. 14(17), pages 1-21, August.
    15. Du, Guodong & Zou, Yuan & Zhang, Xudong & Kong, Zehui & Wu, Jinlong & He, Dingbo, 2019. "Intelligent energy management for hybrid electric tracked vehicles using online reinforcement learning," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    16. Guo, Hongqiang & Sun, Qun & Wang, Chong & Wang, Qinpu & Lu, Silong, 2018. "A systematic design and optimization method of transmission system and power management for a plug-in hybrid electric vehicle," Energy, Elsevier, vol. 148(C), pages 1006-1017.
    17. Du, Jiuyu & Chen, Jingfu & Song, Ziyou & Gao, Mingming & Ouyang, Minggao, 2017. "Design method of a power management strategy for variable battery capacities range-extended electric vehicles to improve energy efficiency and cost-effectiveness," Energy, Elsevier, vol. 121(C), pages 32-42.
    18. Chen, Zheng & Hu, Hengjie & Wu, Yitao & Zhang, Yuanjian & Li, Guang & Liu, Yonggang, 2020. "Stochastic model predictive control for energy management of power-split plug-in hybrid electric vehicles based on reinforcement learning," Energy, Elsevier, vol. 211(C).
    19. Zeyu Chen & Jiahuan Lu & Bo Liu & Nan Zhou & Shijie Li, 2020. "Optimal Energy Management of Plug-In Hybrid Electric Vehicles Concerning the Entire Lifespan of Lithium-Ion Batteries," Energies, MDPI, vol. 13(10), pages 1-15, May.
    20. Zhuang, Weichao & Zhang, Xiaowu & Li, Daofei & Wang, Liangmo & Yin, Guodong, 2017. "Mode shift map design and integrated energy management control of a multi-mode hybrid electric vehicle," Applied Energy, Elsevier, vol. 204(C), pages 476-488.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:5:p:845-:d:210873. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.