IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v12y2024i4p537-d1336205.html
   My bibliography  Save this article

A Fault Detection System for Wiring Harness Manufacturing Using Artificial Intelligence

Author

Listed:
  • Jinwoo Song

    (Department of Mechanical, Robotics and Energy Engineering, Dongguk University-Seoul, Seoul 04620, Republic of Korea)

  • Prashant Kumar

    (Department of Mechanical, Robotics and Energy Engineering, Dongguk University-Seoul, Seoul 04620, Republic of Korea)

  • Yonghawn Kim

    (R&D Center, SUNG CHANG Co., Busan 46707, Republic of Korea)

  • Heung Soo Kim

    (Department of Mechanical, Robotics and Energy Engineering, Dongguk University-Seoul, Seoul 04620, Republic of Korea)

Abstract

Due to its simplicity, accuracy, and adaptability, Crimp Force Monitoring (CFM) has long been the standard for fault detection in wiring harness manufacturing. However, it necessitates frequent reconfigurations based on the variability in materials, dependency on operator skill, and high costs of implementation, and thus reconfiguration presents significant challenges. To solve these problems, this paper introduces a fault detection system that employs an Artificial Intelligence (AI) classification model to enhance the performance and cost-efficiency of the quality control process of wiring harness manufacturing. Since there are no labeled data to train the classification model at the onset of manufacturing, a small number of normal data from each production run are manually extracted to train the model. To address the constraint of the limited available data, the system generates synthetic data from normal data, simulating potential defects by using Regional Selective Data Scaling (RSDS). This innovative method performs upscaling or downscaling on specific regions of the original data to produce synthetic abnormal data, which enables the fault detection system to efficiently train its classification model with a dataset consisting solely of normal operation data.

Suggested Citation

  • Jinwoo Song & Prashant Kumar & Yonghawn Kim & Heung Soo Kim, 2024. "A Fault Detection System for Wiring Harness Manufacturing Using Artificial Intelligence," Mathematics, MDPI, vol. 12(4), pages 1-17, February.
  • Handle: RePEc:gam:jmathe:v:12:y:2024:i:4:p:537-:d:1336205
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/12/4/537/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/12/4/537/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dwivedi, Yogesh K. & Hughes, Laurie & Ismagilova, Elvira & Aarts, Gert & Coombs, Crispin & Crick, Tom & Duan, Yanqing & Dwivedi, Rohita & Edwards, John & Eirug, Aled & Galanos, Vassilis & Ilavarasan, , 2021. "Artificial Intelligence (AI): Multidisciplinary perspectives on emerging challenges, opportunities, and agenda for research, practice and policy," International Journal of Information Management, Elsevier, vol. 57(C).
    2. Chia-Yu Hsu & Wei-Chen Liu, 2021. "Multiple time-series convolutional neural network for fault detection and diagnosis and empirical study in semiconductor manufacturing," Journal of Intelligent Manufacturing, Springer, vol. 32(3), pages 823-836, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Evangelos Katsamakas & Oleg V. Pavlov & Ryan Saklad, 2024. "Artificial intelligence and the transformation of higher education institutions," Papers 2402.08143, arXiv.org.
    2. Woszczyna Karolina & Mania Karolina, 2023. "The European map of artificial intelligence development policies: a comparative analysis," International Journal of Contemporary Management, Sciendo, vol. 59(3), pages 78-87, September.
    3. Chen, Pengyu & Chu, Zhongzhu & Zhao, Miao, 2024. "The Road to corporate sustainability: The importance of artificial intelligence," Technology in Society, Elsevier, vol. 76(C).
    4. Yi Sun & Shihui Li & Lingling Yu, 2022. "The dark sides of AI personal assistant: effects of service failure on user continuance intention," Electronic Markets, Springer;IIM University of St. Gallen, vol. 32(1), pages 17-39, March.
    5. Chen, Xun-Qi & Ma, Chao-Qun & Ren, Yi-Shuai & Lei, Yu-Tian & Huynh, Ngoc Quang Anh & Narayan, Seema, 2023. "Explainable artificial intelligence in finance: A bibliometric review," Finance Research Letters, Elsevier, vol. 56(C).
    6. Hoffmann, Stefan & Lasarov, Wassili & Dwivedi, Yogesh K., 2024. "AI-empowered scale development: Testing the potential of ChatGPT," Technological Forecasting and Social Change, Elsevier, vol. 205(C).
    7. Kamoonpuri, Sana Zehra & Sengar, Anita, 2023. "Hi, May AI help you? An analysis of the barriers impeding the implementation and use of artificial intelligence-enabled virtual assistants in retail," Journal of Retailing and Consumer Services, Elsevier, vol. 72(C).
    8. D'Al, Francesco & Santarelli, Enrico & Vivarelli, Marco, 2024. "The KSTE+I approach and the advent of AI technologies: evidence from the European regions," GLO Discussion Paper Series 1473, Global Labor Organization (GLO).
    9. D'Allesandro, Francesco & Santarelli, Enrico & Vivarelli, Marco, 2024. "The KSTE+I approach and the AI technologies," MERIT Working Papers 2024-016, United Nations University - Maastricht Economic and Social Research Institute on Innovation and Technology (MERIT).
    10. Radka Nacheva & Maciej Czaplewski, 2024. "Artificial Intelligence In Helping People With Disabilities: Opportunities And Challenges," HR and Technologies, Creative Space Association, issue 1, pages 102-124.
    11. Fawwaz Tawfiq Awamleh & Ala Nihad Bustami, 2022. "Examine the Mediating Role of the Information Technology Capabilities on the Relationship Between Artificial Intelligence and Competitive Advantage During the COVID-19 Pandemic," SAGE Open, , vol. 12(3), pages 21582440221, August.
    12. Kim, Woo Jin & Ryoo, Yuhosua & Kim, Eunjin Anna & Stafford, Marla, 2024. "Hero or Villain: The Paradox of AI Algorithmic Disclosure in Utilitarian Versus Deontological Ethics," 24th ITS Biennial Conference, Seoul 2024. New bottles for new wine: digital transformation demands new policies and strategies 302483, International Telecommunications Society (ITS).
    13. Conrad Onesime Oboulhas Tsahat & Ngoulou-A -Ndzeli & Charmolavy Goslavy Lionel Nkouka Moukengue, 2024. "Opportunities for Using Machine Learning and Artificial Intelligence in Business Analytics," Computer and Information Science, Canadian Center of Science and Education, vol. 17(2), pages 1-1, November.
    14. Yogesh K. Dwivedi & N. Kshetri & L. Hughes & Nripendra P. Rana & A.M. Baabdullah & A.K. Kar & A. Koohang & S. Ribeiro-Navarrete & N. Belei & J. Balakrishnan & S. Basu & A. Behl & G.H. Davies & Vincent, 2023. "Exploring the Darkverse: A Multi-Perspective Analysis of the Negative Societal Impacts of the Metaverse," Post-Print hal-04292609, HAL.
    15. Volkmar, Gioia & Fischer, Peter M. & Reinecke, Sven, 2022. "Artificial Intelligence and Machine Learning: Exploring drivers, barriers, and future developments in marketing management," Journal of Business Research, Elsevier, vol. 149(C), pages 599-614.
    16. Mustak, Mekhail & Salminen, Joni & Mäntymäki, Matti & Rahman, Arafat & Dwivedi, Yogesh K., 2023. "Deepfakes: Deceptions, mitigations, and opportunities," Journal of Business Research, Elsevier, vol. 154(C).
    17. Chenfeng Yan & Quan Chen & Xinyue Zhou & Xin Dai & Zhilin Yang, 2024. "When the Automated fire Backfires: The Adoption of Algorithm-based HR Decision-making Could Induce Consumer’s Unfavorable Ethicality Inferences of the Company," Journal of Business Ethics, Springer, vol. 190(4), pages 841-859, April.
    18. Shore, Adam & Tiwari, Manisha & Tandon, Priyanka & Foropon, Cyril, 2024. "Building entrepreneurial resilience during crisis using generative AI: An empirical study on SMEs," Technovation, Elsevier, vol. 135(C).
    19. Jeongsub Choi & Mengmeng Zhu & Jihoon Kang & Myong K. Jeong, 2024. "Convolutional neural network based multi-input multi-output model for multi-sensor multivariate virtual metrology in semiconductor manufacturing," Annals of Operations Research, Springer, vol. 339(1), pages 185-201, August.
    20. Li, Sixian & Peluso, Alessandro M. & Duan, Jinyun, 2023. "Why do we prefer humans to artificial intelligence in telemarketing? A mind perception explanation," Journal of Retailing and Consumer Services, Elsevier, vol. 70(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:12:y:2024:i:4:p:537-:d:1336205. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.