IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v12y2024i3p412-d1327596.html
   My bibliography  Save this article

Dynamic Behavior of a 10 MW Floating Wind Turbine Concrete Platform under Harsh Conditions

Author

Listed:
  • Xiaocui Chen

    (College of Energy and Electrical Engineering, Hohai University, Nanjing 211100, China)

  • Qirui Wang

    (College of Energy and Electrical Engineering, Hohai University, Nanjing 211100, China)

  • Yuquan Zhang

    (College of Energy and Electrical Engineering, Hohai University, Nanjing 211100, China)

  • Yuan Zheng

    (College of Energy and Electrical Engineering, Hohai University, Nanjing 211100, China)

Abstract

To ensure the safe and stable operation of a 10 MW floating wind turbine concrete platform under harsh sea conditions, the fluid–structure coupling theory was used to apply wind, wave, and current loads to a concrete semi-submersible floating platform, and strength analysis was performed to calculate its stress and deformation under environmental loads. Moreover, the safety factor and fatigue life prediction of the platform were also conducted. The results indicated that the incident angles of the environmental loads had a significant impact on motion response in the surge, sway, pitch, and yaw directions. As the incident angles increased, the motion response in the surge and pitch directions gradually decreased, the motion response in the sway direction gradually increased, and the yaw motion response showed a trend of first increasing and then decreasing. In addition, the maximum stress of the floating platform under harsh sea conditions was 12.718 MPa, mainly concentrated at the connection of the middle column and pontoon and the connection of the heave plate and Y-shaped pontoon, which meets the use strength requirements. However, the stress concentration zone exhibited a significantly shorter fatigue life with a magnitude of 10 6 . This implies a higher susceptibility to fatigue damage and the potential occurrence of structural failure. This research holds paramount significance in ensuring the safe and stable operation of floating wind turbine platforms, particularly under harsh sea conditions.

Suggested Citation

  • Xiaocui Chen & Qirui Wang & Yuquan Zhang & Yuan Zheng, 2024. "Dynamic Behavior of a 10 MW Floating Wind Turbine Concrete Platform under Harsh Conditions," Mathematics, MDPI, vol. 12(3), pages 1-19, January.
  • Handle: RePEc:gam:jmathe:v:12:y:2024:i:3:p:412-:d:1327596
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/12/3/412/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/12/3/412/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jianxiong Gao & Yuanyuan Liu & Yiping Yuan & Fei Heng, 2023. "Residual Strength Modeling and Reliability Analysis of Wind Turbine Gear under Different Random Loadings," Mathematics, MDPI, vol. 11(18), pages 1-24, September.
    2. Francisco Rubio & Carlos Llopis-Albert & Ana M. Pedrosa, 2023. "Analysis of the Influence of Calculation Parameters on the Design of the Gearbox of a High-Power Wind Turbine," Mathematics, MDPI, vol. 11(19), pages 1-19, September.
    3. Zhang, Yuquan & Zang, Wei & Zheng, Jinhai & Cappietti, Lorenzo & Zhang, Jisheng & Zheng, Yuan & Fernandez-Rodriguez, E., 2021. "The influence of waves propagating with the current on the wake of a tidal stream turbine," Applied Energy, Elsevier, vol. 290(C).
    4. Joseph Baquerizo & Christian Tutivén & Bryan Puruncajas & Yolanda Vidal & José Sampietro, 2022. "Siamese Neural Networks for Damage Detection and Diagnosis of Jacket-Type Offshore Wind Turbine Platforms," Mathematics, MDPI, vol. 10(7), pages 1-20, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Zhi & Zhang, Yuquan & Zheng, Yuan & Zhang, Jisheng & Fernandez-Rodriguez, Emmanuel & Zang, Wei & Ji, Renwei, 2023. "Power fluctuation and wake characteristics of tidal stream turbine subjected to wave and current interaction," Energy, Elsevier, vol. 264(C).
    2. Shuangqing Yan & Yang Zheng & Jinbao Chen & Yousong Shi, 2022. "Hydraulic Oscillation Analysis of the Hydropower Station with an Equivalent Circuit-Based Hydraulic Impedance Scheme," Sustainability, MDPI, vol. 14(18), pages 1-16, September.
    3. Wu, Baigong & Zhan, Mingjing & Wu, Rujian & Zhang, Xiao, 2023. "The investigation of a coaxial twin-counter-rotating turbine with variable-pitch adaptive blades," Energy, Elsevier, vol. 267(C).
    4. Qinghong Zhang & Zhouhao Shi & Weidong Shi & Zhanshan Xie & Linwei Tan & Yongfei Yang, 2022. "Research on Flow Field Characteristics in Water Jet Nozzle and Surface Damage Caused by Target Impact," Sustainability, MDPI, vol. 14(15), pages 1-13, July.
    5. Deng, Xu & Zhang, Jisheng & Lin, Xiangfeng, 2024. "Proposal of actuator line-immersed boundary coupling model for tidal stream turbine modeling with hydrodynamics upon scouring morphology," Energy, Elsevier, vol. 292(C).
    6. Ge, Xinfeng & Sun, Jie & Zhou, Ye & Cai, Jianguo & Zhang, Hui & Zhang, Lei & Ding, Mingquan & Deng, Chaozhong & Binama, Maxime & Zheng, Yuan, 2021. "Experimental and Numerical studies on Opening and Velocity Influence on Sediment Erosion of Pelton Turbine Buckets," Renewable Energy, Elsevier, vol. 173(C), pages 1040-1056.
    7. Yuquan Zhang & Zhiqiang Liu & Chengyi Li & Xuemei Wang & Yuan Zheng & Zhi Zhang & Emmanuel Fernandez-Rodriguez & Rabea Jamil Mahfoud, 2022. "Fluid–Structure Interaction Modeling of Structural Loads and Fatigue Life Analysis of Tidal Stream Turbine," Mathematics, MDPI, vol. 10(19), pages 1-15, October.
    8. Yantao Zhu & Mingxia Xie & Kang Zhang & Zhipeng Li, 2023. "A Dam Deformation Residual Correction Method for High Arch Dams Using Phase Space Reconstruction and an Optimized Long Short-Term Memory Network," Mathematics, MDPI, vol. 11(9), pages 1-20, April.
    9. Jie Sun & Yuquan Zhang & Bin Liu & Xinfeng Ge & Yuan Zheng & Emmanuel Fernandez-Rodriguez, 2022. "Research on Oil Mist Leakage of Bearing in Hydropower Station: A Review," Energies, MDPI, vol. 15(7), pages 1-24, April.
    10. Baolong Liu & Jianxing Yu, 2022. "Effect of Mooring Parameters on Dynamic Responses of a Semi-Submersible Floating Offshore Wind Turbine," Sustainability, MDPI, vol. 14(21), pages 1-18, October.
    11. Rabea Jamil Mahfoud & Nizar Faisal Alkayem & Emmanuel Fernandez-Rodriguez & Yuan Zheng & Yonghui Sun & Shida Zhang & Yuquan Zhang, 2024. "Evolutionary Approach for DISCO Profit Maximization by Optimal Planning of Distributed Generators and Energy Storage Systems in Active Distribution Networks," Mathematics, MDPI, vol. 12(2), pages 1-33, January.
    12. Yangyang Wei & Yuhui Shi & Weidong Shi & Bo Pan, 2022. "Numerical Analysis and Experimental Study of Unsteady Flow Characteristics in an Ultra-Low Specific Speed Centrifugal Pump," Sustainability, MDPI, vol. 14(24), pages 1-15, December.
    13. Garcia-Novo, Patxi & Inubuse, Masako & Matsuno, Takeshi & Kyozuka, Yusaku & Archer, Philip & Matsuo, Hiroshi & Henzan, Katsuhiro & Sakaguchi, Daisaku, 2024. "Characterization of the wake generated downstream of a MW-scale tidal turbine in Naru Strait, Japan, based on vessel-mounted ADCP data," Energy, Elsevier, vol. 299(C).
    14. Zhang, Yuquan & Wei, Wenqian & Zheng, Jinhai & Peng, Bin & Qian, Yaoru & Li, Chengyi & Zheng, Yuan & Fernandez-Rodriguez, Emmanuel & Yu, An, 2023. "Quantifying the surge-induced response of a floating tidal stream turbine under wave-current flows," Energy, Elsevier, vol. 283(C).
    15. Yuxiang Zhao & Caixia Mo & Wanqiang Zhu & Jianmei Chen & Baigong Wu & Xiao Zhang & Xueming Zhang & Liwei Chen, 2023. "Design and Test for a New Type of Permanent Magnet Synchronous Generator Applied in Tidal Current Energy System," Sustainability, MDPI, vol. 15(9), pages 1-18, April.
    16. Mahfoud, Rabea Jamil & Alkayem, Nizar Faisal & Zhang, Yuquan & Zheng, Yuan & Sun, Yonghui & Alhelou, Hassan Haes, 2023. "Optimal operation of pumped hydro storage-based energy systems: A compendium of current challenges and future perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 178(C).
    17. Yang, Chunxia & Li, Qian & Hu, Xueyuan & Zheng, Yuan & Wu, Jiawei & Su, Shengzhi & Yu, An, 2023. "Fish injury analysis and flip-blade type optimization design of an undershot waterwheel," Renewable Energy, Elsevier, vol. 219(P1).
    18. Shu, Tong & Song, Dongran & Hoon Joo, Young, 2022. "Decentralised optimisation for large offshore wind farms using a sparsified wake directed graph," Applied Energy, Elsevier, vol. 306(PA).
    19. Wei Zang & Yuan Zheng & Yuquan Zhang & Xiangfeng Lin & Yanwei Li & Emmanuel Fernandez-Rodriguez, 2022. "Numerical Investigation on a Diffuser-Augmented Horizontal Axis Tidal Stream Turbine with the Entropy Production Theory," Mathematics, MDPI, vol. 11(1), pages 1-18, December.
    20. Linjun Shi & Fan Yang & Yang Li & Tao Zheng & Feng Wu & Kwang Y. Lee, 2022. "Optimal Configuration of Electrochemical Energy Storage for Renewable Energy Accommodation Based on Operation Strategy of Pumped Storage Hydro," Sustainability, MDPI, vol. 14(15), pages 1-20, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:12:y:2024:i:3:p:412-:d:1327596. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.