IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v10y2022i7p1131-d785223.html
   My bibliography  Save this article

Siamese Neural Networks for Damage Detection and Diagnosis of Jacket-Type Offshore Wind Turbine Platforms

Author

Listed:
  • Joseph Baquerizo

    (Mechatronics Engineering, Faculty of Mechanical Engineering and Production Science (FIMCP), Escuela Superior Politécnica del Litoral (ESPOL), Campus Gustavo Galindo Km. 30.5 Vía Perimetral, Guayaquil P.O. Box 09-01-5863, Ecuador)

  • Christian Tutivén

    (Mechatronics Engineering, Faculty of Mechanical Engineering and Production Science (FIMCP), Escuela Superior Politécnica del Litoral (ESPOL), Campus Gustavo Galindo Km. 30.5 Vía Perimetral, Guayaquil P.O. Box 09-01-5863, Ecuador)

  • Bryan Puruncajas

    (Mechatronics Engineering, Faculty of Mechanical Engineering and Production Science (FIMCP), Escuela Superior Politécnica del Litoral (ESPOL), Campus Gustavo Galindo Km. 30.5 Vía Perimetral, Guayaquil P.O. Box 09-01-5863, Ecuador
    Control, Modeling, Identification and Applications (CoDAlab), Department of Mathematics, Escola d’Enginyeria de Barcelona Est (EEBE), Campus Diagonal-Besós (CDB), Universitat Politècnica de Catalunya (UPC), Eduard Maristany 16, 08019 Barcelona, Spain)

  • Yolanda Vidal

    (Control, Modeling, Identification and Applications (CoDAlab), Department of Mathematics, Escola d’Enginyeria de Barcelona Est (EEBE), Campus Diagonal-Besós (CDB), Universitat Politècnica de Catalunya (UPC), Eduard Maristany 16, 08019 Barcelona, Spain
    Institute of Mathematics (IMTech), Universitat Politècnica de Catalunya (UPC), Pau Gargallo 14, 08028 Barcelona, Spain)

  • José Sampietro

    (Facultad de Ingenierías, Universidad ECOTEC, Km. 13.5 Vía a Samborondón, Guayaquil 092302, Ecuador)

Abstract

Offshore wind energy is increasingly being realized at deeper ocean depths where jacket foundations are now the greatest choice for dealing with the hostile environment. The structural stability of these undersea constructions is critical. This paper states a methodology to detect and classify damage in a jacket-type support structure for offshore wind turbines. Because of the existence of unknown external disturbances (wind and waves), standard structural health monitoring technologies, such as guided waves, cannot be used directly in this application. Therefore, using vibration-response-only accelerometer measurements, a methodology based on two in-cascade Siamese convolutional neural networks is proposed. The first Siamese network detects the damage (discerns whether the structure is healthy or damaged). Then, in case damage is detected, a second Siamese network determines the damage diagnosis (classifies the type of damage). The main results and claims of the proposed methodology are the following ones: (i) It is solely dependent on accelerometer sensor output vibration data, (ii) it detects damage and classifies the type of damage, (iii) it operates in all wind turbine regions of operation, (iv) it requires less data to train since it is built on Siamese convolutional neural networks, which can learn from very little data compared to standard machine/deep learning algorithms, (v) it is validated in a scaled-down experimental laboratory setup, and (vi) its feasibility is demonstrated as all computed metrics (accuracy, precision, recall, and F1 score) for the obtained results remain above 96%.

Suggested Citation

  • Joseph Baquerizo & Christian Tutivén & Bryan Puruncajas & Yolanda Vidal & José Sampietro, 2022. "Siamese Neural Networks for Damage Detection and Diagnosis of Jacket-Type Offshore Wind Turbine Platforms," Mathematics, MDPI, vol. 10(7), pages 1-20, April.
  • Handle: RePEc:gam:jmathe:v:10:y:2022:i:7:p:1131-:d:785223
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/10/7/1131/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/10/7/1131/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Maria Martinez-Luengo & Mahmood Shafiee, 2019. "Guidelines and Cost-Benefit Analysis of the Structural Health Monitoring Implementation in Offshore Wind Turbine Support Structures," Energies, MDPI, vol. 12(6), pages 1-26, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiaocui Chen & Qirui Wang & Yuquan Zhang & Yuan Zheng, 2024. "Dynamic Behavior of a 10 MW Floating Wind Turbine Concrete Platform under Harsh Conditions," Mathematics, MDPI, vol. 12(3), pages 1-19, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cevasco, D. & Koukoura, S. & Kolios, A.J., 2021. "Reliability, availability, maintainability data review for the identification of trends in offshore wind energy applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 136(C).
    2. Adedipe, Tosin & Shafiee, Mahmood & Zio, Enrico, 2020. "Bayesian Network Modelling for the Wind Energy Industry: An Overview," Reliability Engineering and System Safety, Elsevier, vol. 202(C).
    3. de N Santos, Francisco & D’Antuono, Pietro & Robbelein, Koen & Noppe, Nymfa & Weijtjens, Wout & Devriendt, Christof, 2023. "Long-term fatigue estimation on offshore wind turbines interface loads through loss function physics-guided learning of neural networks," Renewable Energy, Elsevier, vol. 205(C), pages 461-474.
    4. Wang, L. & Kolios, A. & Liu, X. & Venetsanos, D. & Rui, C., 2022. "Reliability of offshore wind turbine support structures: A state-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    5. Mark Richmond & Ursula Smolka & Athanasios Kolios, 2020. "Feasibility for Damage Identification in Offshore Wind Jacket Structures through Monitoring of Global Structural Dynamics," Energies, MDPI, vol. 13(21), pages 1-24, November.
    6. Long, Lijia & Mai, Quang Anh & Morato, Pablo Gabriel & Sørensen, John Dalsgaard & Thöns, Sebastian, 2020. "Information value-based optimization of structural and environmental monitoring for offshore wind turbines support structures," Renewable Energy, Elsevier, vol. 159(C), pages 1036-1046.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:7:p:1131-:d:785223. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.