Author
Listed:
- Jin Han
(School of Computer and Software, Nanjing University of Information Science & Technology, Nanjing 210044, China)
- Liang Yang
(School of Computer Science, Nanjing University of Information Science & Technology, Nanjing 210044, China)
Abstract
In natural language processing (NLP) tasks, computing semantic textual similarity (STS) is crucial for capturing nuanced semantic differences in text. Traditional word vector methods, such as Word2Vec and GloVe, as well as deep learning models like BERT, face limitations in handling context dependency and polysemy and present challenges in computational resources and real-time processing. To address these issues, this paper introduces two novel methods. First, a sentence embedding generation method based on Kullback–Leibler Divergence (KLD) optimization is proposed, which enhances semantic differentiation between sentence vectors, thereby improving the accuracy of textual similarity computation. Second, this study proposes a framework incorporating RoBERTa knowledge distillation, which integrates the deep semantic insights of the RoBERTa model with prior methodologies to enhance sentence embeddings while preserving computational efficiency. Additionally, the study extends its contributions to sentiment analysis tasks by leveraging the enhanced embeddings for classification. The sentiment analysis experiments, conducted using a Stochastic Gradient Descent (SGD) classifier on the ACL IMDB dataset, demonstrate the effectiveness of the proposed methods, achieving high precision, recall, and F1 score metrics. To further augment model accuracy and efficacy, a feature selection approach is introduced, specifically through the Dynamic Principal Component Selection (DPCS) algorithm. The DPCS method autonomously identifies and prioritizes critical features, thus enriching the expressive capacity of sentence vectors and significantly advancing the accuracy of similarity computations. Experimental results demonstrate that our method outperforms existing methods in semantic similarity computation on the SemEval-2016 dataset. When evaluated using cosine similarity of average vectors, our model achieved a Pearson correlation coefficient (τ) of 0.470, a Spearman correlation coefficient (ρ) of 0.481, and a mean absolute error (MAE) of 2.100. Compared to traditional methods such as Word2Vec, GloVe, and FastText, our method significantly enhances similarity computation accuracy. Using TF-IDF-weighted cosine similarity evaluation, our model achieved a τ of 0.528, ρ of 0.518, and an MAE of 1.343. Additionally, in the cosine similarity assessment leveraging the Dynamic Principal Component Smoothing (DPCS) algorithm, our model achieved a τ of 0.530, ρ of 0.518, and an MAE of 1.320, further demonstrating the method’s effectiveness and precision in handling semantic similarity. These results indicate that our proposed method has high relevance and low error in semantic textual similarity tasks, thereby better capturing subtle semantic differences between texts.
Suggested Citation
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:12:y:2024:i:24:p:3990-:d:1547080. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.