IDEAS home Printed from https://ideas.repec.org/a/oup/biomet/v109y2022i2p317-333..html
   My bibliography  Save this article

On the power of Chatterjee’s rank correlation
[Adaptive test of independence based on HSIC measures]

Author

Listed:
  • H Shi
  • M Drton
  • F Han

Abstract

SummaryChatterjee (2021) introduced a simple new rank correlation coefficient that has attracted much attention recently. The coefficient has the unusual appeal that it not only estimates a population quantity first proposed by Dette et al. (2013) that is zero if and only if the underlying pair of random variables is independent, but also is asymptotically normal under independence. This paper compares Chatterjee’s new correlation coefficient with three established rank correlations that also facilitate consistent tests of independence, namely Hoeffding’s , Blum–Kiefer–Rosenblatt’s , and Bergsma–Dassios–Yanagimoto’s . We compare the computational efficiency of these rank correlation coefficients in light of recent advances, and investigate their power against local rotation and mixture alternatives. Our main results show that Chatterjee’s coefficient is unfortunately rate-suboptimal compared to ,and . The situation is more subtle for a related earlier estimator of Dette et al. (2013). These results favour ,andover Chatterjee’s new correlation coefficient for the purpose of testing independence.

Suggested Citation

  • H Shi & M Drton & F Han, 2022. "On the power of Chatterjee’s rank correlation [Adaptive test of independence based on HSIC measures]," Biometrika, Biometrika Trust, vol. 109(2), pages 317-333.
  • Handle: RePEc:oup:biomet:v:109:y:2022:i:2:p:317-333.
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/biomet/asab028
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hongjian Shi & Marc Hallin & Mathias Drton & Fang Han, 2020. "Rate-Optimality of Consistent Distribution-Free Tests of Independence Based on Center-Outward Ranks and Signs," Working Papers ECARES 2020-23, ULB -- Universite Libre de Bruxelles.
    2. L Weihs & M Drton & N Meinshausen, 2018. "Symmetric rank covariances: a generalized framework for nonparametric measures of dependence," Biometrika, Biometrika Trust, vol. 105(3), pages 547-562.
    3. Holger Dette & Karl F. Siburg & Pavel A. Stoimenov, 2013. "A Copula-Based Non-parametric Measure of Regression Dependence," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 40(1), pages 21-41, March.
    4. Sourav Chatterjee, 2021. "A New Coefficient of Correlation," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 116(536), pages 2009-2022, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Qingyang, 2023. "On the asymptotic null distribution of the symmetrized Chatterjee’s correlation coefficient," Statistics & Probability Letters, Elsevier, vol. 194(C).
    2. Reza Salimi & Kamran Pakizeh, 2024. "The extension of Pearson correlation coefficient, measuring noise, and selecting features," Papers 2402.00543, arXiv.org.
    3. Junlong Feng & Sokbae Lee, 2023. "Individual Welfare Analysis: Random Quasilinear Utility, Independence, and Confidence Bounds," Papers 2304.01921, arXiv.org, revised Jun 2024.
    4. Zhexiao Lin & Fang Han, 2023. "On the failure of the bootstrap for Chatterjee's rank correlation," Papers 2303.14088, arXiv.org, revised Apr 2023.
    5. Fang Han, 2024. "An Introduction to Permutation Processes (version 0.5)," Papers 2407.09664, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhexiao Lin & Fang Han, 2023. "On the failure of the bootstrap for Chatterjee's rank correlation," Papers 2303.14088, arXiv.org, revised Apr 2023.
    2. Zhang, Qingyang, 2023. "On the asymptotic null distribution of the symmetrized Chatterjee’s correlation coefficient," Statistics & Probability Letters, Elsevier, vol. 194(C).
    3. Ansari Jonathan & Rockel Marcus, 2024. "Dependence properties of bivariate copula families," Dependence Modeling, De Gruyter, vol. 12(1), pages 1-36.
    4. Junker, Robert R. & Griessenberger, Florian & Trutschnig, Wolfgang, 2021. "Estimating scale-invariant directed dependence of bivariate distributions," Computational Statistics & Data Analysis, Elsevier, vol. 153(C).
    5. Yihui He & Fang Han, 2023. "On propensity score matching with a diverging number of matches," Papers 2310.14142, arXiv.org, revised Nov 2023.
    6. Shih, Jia-Han & Emura, Takeshi, 2021. "On the copula correlation ratio and its generalization," Journal of Multivariate Analysis, Elsevier, vol. 182(C).
    7. Hongjian Shi & Mathias Drton & Marc Hallin & Fang Han, 2023. "Semiparametrically Efficient Tests of Multivariate Independence Using Center-Outward Quadrant, Spearman, and Kendall Statistics," Working Papers ECARES 2023-03, ULB -- Universite Libre de Bruxelles.
    8. Fang Han, 2024. "An Introduction to Permutation Processes (version 0.5)," Papers 2407.09664, arXiv.org.
    9. Almanza Junco, Carlos Alberto & Parra Acosta, Yenny Katherine & Sabogal Salamanca, Mauricio, 2024. "Model of innovation in agriculture 4.0 processes in the department of Cundinamarca, Colombia," Revista Tendencias, Universidad de Narino, vol. 25(2), pages 86-112, July.
    10. Fuchs, Sebastian & Tschimpke, Marco, 2024. "A novel positive dependence property and its impact on a popular class of concordance measures," Journal of Multivariate Analysis, Elsevier, vol. 200(C).
    11. Abdol Rassoul Zarei & Marzieh Mokarram & Mohammad Reza Mahmoudi, 2023. "Comparison of the capability of the Meteorological and Remote Sensing Drought Indices," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(2), pages 769-796, January.
    12. Griessenberger Florian & Trutschnig Wolfgang, 2022. "Maximal asymmetry of bivariate copulas and consequences to measures of dependence," Dependence Modeling, De Gruyter, vol. 10(1), pages 245-269, January.
    13. Hongjian Shi & Marc Hallin & Mathias Drton & Fang Han, 2020. "Rate-Optimality of Consistent Distribution-Free Tests of Independence Based on Center-Outward Ranks and Signs," Working Papers ECARES 2020-23, ULB -- Universite Libre de Bruxelles.
    14. Borgonovo, Emanuele & Clemente, Gian Paolo & Rabitti, Giovanni, 2024. "Why insurance regulators need to require sensitivity settings of internal models for their approval," Finance Research Letters, Elsevier, vol. 60(C).
    15. Wu, Zeyu & Wang, Cheng, 2022. "Limiting spectral distribution of large dimensional Spearman’s rank correlation matrices," Journal of Multivariate Analysis, Elsevier, vol. 191(C).
    16. Borgonovo, Emanuele & Ghidini, Valentina & Hahn, Roman & Plischke, Elmar, 2023. "Explaining classifiers with measures of statistical association," Computational Statistics & Data Analysis, Elsevier, vol. 182(C).
    17. Tobias Fissler & Marc-Oliver Pohle, 2023. "Generalised Covariances and Correlations," Papers 2307.03594, arXiv.org, revised Sep 2023.
    18. Juan C. King & Roberto Dale & Jos'e M. Amig'o, 2024. "Blockchain Metrics and Indicators in Cryptocurrency Trading," Papers 2403.00770, arXiv.org.
    19. King, Juan C. & Dale, Roberto & Amigó, José M., 2024. "Blockchain metrics and indicators in cryptocurrency trading," Chaos, Solitons & Fractals, Elsevier, vol. 178(C).
    20. Zhaoyang Li & Yuehan Yang, 2024. "A semi-orthogonal nonnegative matrix tri-factorization algorithm for overlapping community detection," Statistical Papers, Springer, vol. 65(6), pages 3601-3619, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:biomet:v:109:y:2022:i:2:p:317-333.. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://academic.oup.com/biomet .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.