IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v12y2024i24p3982-d1546850.html
   My bibliography  Save this article

Integral Neuron: A New Concept for Nonlinear Neuron Modeling Using Weight Functions. Creation of XOR Neurons

Author

Listed:
  • Kostadin Yotov

    (Faculty of Mathematics and Informatics, University of Plovdiv Paisii Hilendarski, 236 Bulgaria Blvd., 4027 Plovdiv, Bulgaria)

  • Emil Hadzhikolev

    (Faculty of Mathematics and Informatics, University of Plovdiv Paisii Hilendarski, 236 Bulgaria Blvd., 4027 Plovdiv, Bulgaria)

  • Stanka Hadzhikoleva

    (Faculty of Mathematics and Informatics, University of Plovdiv Paisii Hilendarski, 236 Bulgaria Blvd., 4027 Plovdiv, Bulgaria)

Abstract

In the present study, an extension of the idea of dynamic neurons is proposed by replacing the weights with a weight function that is applied simultaneously to all neuron inputs. A new type of artificial neuron called an integral neuron is modeled, in which the total signal is obtained as the integral of the weight function. The integral neuron enhances traditional neurons by allowing the signal shape to be linear and nonlinear. The training of the integral neuron involves finding the parameters of the weight function, where its functional values directly influence the total signal in the neuron’s body. This article presents theoretical and experimental evidence for the applicability and convergence of standard training methods such as gradient descent, Gauss–Newton, and Levenberg–Marquardt in searching for the optimal weight function of an integral neuron. The experimental part of the study demonstrates that a single integral neuron can be trained on the logical XOR function—something that is impossible for single classical neurons due to the linear nature of the summation in their bodies.

Suggested Citation

  • Kostadin Yotov & Emil Hadzhikolev & Stanka Hadzhikoleva, 2024. "Integral Neuron: A New Concept for Nonlinear Neuron Modeling Using Weight Functions. Creation of XOR Neurons," Mathematics, MDPI, vol. 12(24), pages 1-44, December.
  • Handle: RePEc:gam:jmathe:v:12:y:2024:i:24:p:3982-:d:1546850
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/12/24/3982/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/12/24/3982/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hu, Huanling & Wang, Lin & Tao, Rui, 2021. "Wind speed forecasting based on variational mode decomposition and improved echo state network," Renewable Energy, Elsevier, vol. 164(C), pages 729-751.
    2. Gao, Ruobin & Li, Ruilin & Hu, Minghui & Suganthan, Ponnuthurai Nagaratnam & Yuen, Kum Fai, 2023. "Dynamic ensemble deep echo state network for significant wave height forecasting," Applied Energy, Elsevier, vol. 329(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Acikgoz, Hakan & Budak, Umit & Korkmaz, Deniz & Yildiz, Ceyhun, 2021. "WSFNet: An efficient wind speed forecasting model using channel attention-based densely connected convolutional neural network," Energy, Elsevier, vol. 233(C).
    2. Eduardo Luiz Alba & Gilson Adamczuk Oliveira & Matheus Henrique Dal Molin Ribeiro & Érick Oliveira Rodrigues, 2024. "Electricity Consumption Forecasting: An Approach Using Cooperative Ensemble Learning with SHapley Additive exPlanations," Forecasting, MDPI, vol. 6(3), pages 1-25, September.
    3. Elianne Mora & Jenny Cifuentes & Geovanny Marulanda, 2021. "Short-Term Forecasting of Wind Energy: A Comparison of Deep Learning Frameworks," Energies, MDPI, vol. 14(23), pages 1-26, November.
    4. Kuznetsov, G.V. & Syrodoy, S.V. & Nigay, N.A. & Maksimov, V.I. & Gutareva, N.Yu., 2021. "Features of the processes of heat and mass transfer when drying a large thickness layer of wood biomass," Renewable Energy, Elsevier, vol. 169(C), pages 498-511.
    5. Bai, Yulong & Liu, Ming-De & Ding, Lin & Ma, Yong-Jie, 2021. "Double-layer staged training echo-state networks for wind speed prediction using variational mode decomposition," Applied Energy, Elsevier, vol. 301(C).
    6. Wu, Han & Gao, Xiao-Zhi & Heng, Jia-Ni, 2024. "Bio-multisensory-inspired gate-attention coordination model for forecasting short-term significant wave height," Energy, Elsevier, vol. 294(C).
    7. Javad Saadat & Mohsen Farshad & Hussein Eliasi, 2023. "Optimizing Structure and Internal Unit Weights of Echo State Network for an Efficient LMS-Based Online Training," SN Operations Research Forum, Springer, vol. 4(1), pages 1-14, March.
    8. Zhang, Yagang & Zhao, Yunpeng & Shen, Xiaoyu & Zhang, Jinghui, 2022. "A comprehensive wind speed prediction system based on Monte Carlo and artificial intelligence algorithms," Applied Energy, Elsevier, vol. 305(C).
    9. Li, Dan & Jiang, Fuxin & Chen, Min & Qian, Tao, 2022. "Multi-step-ahead wind speed forecasting based on a hybrid decomposition method and temporal convolutional networks," Energy, Elsevier, vol. 238(PC).
    10. Mahdavi-Meymand, Amin & Sulisz, Wojciech, 2023. "Application of nested artificial neural network for the prediction of significant wave height," Renewable Energy, Elsevier, vol. 209(C), pages 157-168.
    11. Chao Tan & Wenrui Tan & Yanjun Shen & Long Yang, 2023. "Multistep Wind Power Prediction Using Time-Varying Filtered Empirical Modal Decomposition and Improved Adaptive Sparrow Search Algorithm-Optimized Phase Space Reconstruction–Echo State Network," Sustainability, MDPI, vol. 15(11), pages 1-17, June.
    12. Zhao, Lingxiao & Li, Zhiyang & Pei, Yuguo & Qu, Leilei, 2024. "Disentangled Seasonal-Trend representation of improved CEEMD-GRU joint model with entropy-driven reconstruction to forecast significant wave height," Renewable Energy, Elsevier, vol. 226(C).
    13. Banteng Liu & Yangqing Xie & Ke Wang & Lizhe Yu & Ying Zhou & Xiaowen Lv, 2023. "Short-Term Multi-Step Wind Direction Prediction Based on OVMD Quadratic Decomposition and LSTM," Sustainability, MDPI, vol. 15(15), pages 1-18, July.
    14. Pang, Junheng & Dong, Sheng, 2023. "A novel multivariable hybrid model to improve short and long-term significant wave height prediction," Applied Energy, Elsevier, vol. 351(C).
    15. Li, Yiman & Peng, Tian & Zhang, Chu & Sun, Wei & Hua, Lei & Ji, Chunlei & Muhammad Shahzad, Nazir, 2022. "Multi-step ahead wind speed forecasting approach coupling maximal overlap discrete wavelet transform, improved grey wolf optimization algorithm and long short-term memory," Renewable Energy, Elsevier, vol. 196(C), pages 1115-1126.
    16. Huang, Xiaojia & Wang, Chen & Zhang, Shenghui, 2024. "Research and application of a Model selection forecasting system for wind speed and theoretical power generation in wind farms based on classification and wind conversion," Energy, Elsevier, vol. 293(C).
    17. Wang, Shuai & Wang, Jianzhou & Lu, Haiyan & Zhao, Weigang, 2021. "A novel combined model for wind speed prediction – Combination of linear model, shallow neural networks, and deep learning approaches," Energy, Elsevier, vol. 234(C).
    18. Meysam Alizamir & Kaywan Othman Ahmed & Jalal Shiri & Ahmad Fakheri Fard & Sungwon Kim & Salim Heddam & Ozgur Kisi, 2023. "A New Insight for Daily Solar Radiation Prediction by Meteorological Data Using an Advanced Artificial Intelligence Algorithm: Deep Extreme Learning Machine Integrated with Variational Mode Decomposit," Sustainability, MDPI, vol. 15(14), pages 1-35, July.
    19. Hu, Huanling & Wang, Lin & Zhang, Dabin & Ling, Liwen, 2023. "Rolling decomposition method in fusion with echo state network for wind speed forecasting," Renewable Energy, Elsevier, vol. 216(C).
    20. Chen, Xinqiang & Lv, Siying & Shang, Wen-long & Wu, Huafeng & Xian, Jiangfeng & Song, Chengcheng, 2024. "Ship energy consumption analysis and carbon emission exploitation via spatial-temporal maritime data," Applied Energy, Elsevier, vol. 360(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:12:y:2024:i:24:p:3982-:d:1546850. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.