Particle Swarm Optimization Algorithm for Determining Global Optima of Investment Portfolio Weight Using Mean-Value-at-Risk Model in Banking Sector Stocks
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Cassidy K. Buhler & Hande Y. Benson, 2023. "Efficient Solution of Portfolio Optimization Problems via Dimension Reduction and Sparsification," Papers 2306.12639, arXiv.org.
- Chueh-Yung Tsao, 2010. "Portfolio selection based on the mean-VaR efficient frontier," Quantitative Finance, Taylor & Francis Journals, vol. 10(8), pages 931-945.
- Panos Xidonas & Ralph Steuer & Christis Hassapis, 2020. "Robust portfolio optimization: a categorized bibliographic review," Annals of Operations Research, Springer, vol. 292(1), pages 533-552, September.
- Mengnan Chen & Yongquan Zhou & Qifang Luo, 2022. "An Improved Arithmetic Optimization Algorithm for Numerical Optimization Problems," Mathematics, MDPI, vol. 10(12), pages 1-27, June.
- Zhengyao Jiang & Dixing Xu & Jinjun Liang, 2017. "A Deep Reinforcement Learning Framework for the Financial Portfolio Management Problem," Papers 1706.10059, arXiv.org, revised Jul 2017.
- Zhang, Tingting & Liu, Zhifeng, 2017. "Fireworks algorithm for mean-VaR/CVaR models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 483(C), pages 1-8.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Amir Mosavi & Pedram Ghamisi & Yaser Faghan & Puhong Duan, 2020. "Comprehensive Review of Deep Reinforcement Learning Methods and Applications in Economics," Papers 2004.01509, arXiv.org.
- Alexandre Carbonneau & Fr'ed'eric Godin, 2021. "Deep equal risk pricing of financial derivatives with non-translation invariant risk measures," Papers 2107.11340, arXiv.org.
- Fischer, Thomas G., 2018. "Reinforcement learning in financial markets - a survey," FAU Discussion Papers in Economics 12/2018, Friedrich-Alexander University Erlangen-Nuremberg, Institute for Economics.
- Charl Maree & Christian W. Omlin, 2022. "Balancing Profit, Risk, and Sustainability for Portfolio Management," Papers 2207.02134, arXiv.org.
- Martino Banchio & Giacomo Mantegazza, 2022. "Artificial Intelligence and Spontaneous Collusion," Papers 2202.05946, arXiv.org, revised Sep 2023.
- Mengying Zhu & Xiaolin Zheng & Yan Wang & Yuyuan Li & Qianqiao Liang, 2019. "Adaptive Portfolio by Solving Multi-armed Bandit via Thompson Sampling," Papers 1911.05309, arXiv.org, revised Nov 2019.
- Amirhosein Mosavi & Yaser Faghan & Pedram Ghamisi & Puhong Duan & Sina Faizollahzadeh Ardabili & Ely Salwana & Shahab S. Band, 2020. "Comprehensive Review of Deep Reinforcement Learning Methods and Applications in Economics," Mathematics, MDPI, vol. 8(10), pages 1-42, September.
- Ben Hambly & Renyuan Xu & Huining Yang, 2021. "Recent Advances in Reinforcement Learning in Finance," Papers 2112.04553, arXiv.org, revised Feb 2023.
- Huang, Xiaoxia & Zhao, Tianyi, 2014. "Mean-chance model for portfolio selection based on uncertain measure," Insurance: Mathematics and Economics, Elsevier, vol. 59(C), pages 243-250.
- Nymisha Bandi & Theja Tulabandhula, 2020. "Off-Policy Optimization of Portfolio Allocation Policies under Constraints," Papers 2012.11715, arXiv.org.
- Tian, Yuan & Han, Minghao & Kulkarni, Chetan & Fink, Olga, 2022. "A prescriptive Dirichlet power allocation policy with deep reinforcement learning," Reliability Engineering and System Safety, Elsevier, vol. 224(C).
- Brini, Alessio & Tedeschi, Gabriele & Tantari, Daniele, 2023.
"Reinforcement learning policy recommendation for interbank network stability,"
Journal of Financial Stability, Elsevier, vol. 67(C).
- Alessio Brini & Gabriele Tedeschi & Daniele Tantari, 2022. "Reinforcement Learning Policy Recommendation for Interbank Network Stability," Papers 2204.07134, arXiv.org, revised May 2023.
- Yuling Max Chen & Bin Li & David Saunders, 2025. "Exploratory Mean-Variance Portfolio Optimization with Regime-Switching Market Dynamics," Papers 2501.16659, arXiv.org.
- Yasuhiro Nakayama & Tomochika Sawaki, 2023. "Causal Inference on Investment Constraints and Non-stationarity in Dynamic Portfolio Optimization through Reinforcement Learning," Papers 2311.04946, arXiv.org.
- Xing Wang & Yijun Wang & Bin Weng & Aleksandr Vinel, 2020. "Stock2Vec: A Hybrid Deep Learning Framework for Stock Market Prediction with Representation Learning and Temporal Convolutional Network," Papers 2010.01197, arXiv.org.
- Shuo Sun & Rundong Wang & Bo An, 2021. "Reinforcement Learning for Quantitative Trading," Papers 2109.13851, arXiv.org.
- Gong, Xu & Lin, Boqiang, 2018. "Structural changes and out-of-sample prediction of realized range-based variance in the stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 494(C), pages 27-39.
- Yunan Ye & Hengzhi Pei & Boxin Wang & Pin-Yu Chen & Yada Zhu & Jun Xiao & Bo Li, 2020. "Reinforcement-Learning based Portfolio Management with Augmented Asset Movement Prediction States," Papers 2002.05780, arXiv.org.
- Ashish Anil Pawar & Vishnureddy Prashant Muskawar & Ritesh Tiku, 2024. "Portfolio Management using Deep Reinforcement Learning," Papers 2405.01604, arXiv.org.
- Kasper Johansson & Stephen Boyd, 2024. "Simple and Effective Portfolio Construction with Crypto Assets," Papers 2412.02654, arXiv.org.
More about this item
Keywords
systematic; local and global optimum; investment portfolio; value at risk;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:12:y:2024:i:24:p:3920-:d:1542568. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.