IDEAS home Printed from https://ideas.repec.org/a/taf/quantf/v10y2010i8p931-945.html
   My bibliography  Save this article

Portfolio selection based on the mean-VaR efficient frontier

Author

Listed:
  • Chueh-Yung Tsao

Abstract

Value-at-Risk (VaR) has become one of the standard measures for assessing risk not only in the financial industry but also for asset allocations of individual investors. The traditional mean-variance framework for portfolio selection should, however, be revised when the investor's concern is the VaR instead of the standard deviation. This is especially true when asset returns are not normal. In this paper, we incorporate VaR in portfolio selection, and we propose a mean-VaR efficient frontier. Due to the two-objective optimization problem that is associated with the mean-VaR framework, an evolutionary multi-objective approach is required to construct the mean-VaR efficient frontier. Specifically, we consider the elitist non-dominated sorting Genetic Algorithm (NSGA-II). From our empirical analysis, we conclude that the risk-averse investor might inefficiently allocate his/her wealth if his/her decision is based on the mean-variance framework.

Suggested Citation

  • Chueh-Yung Tsao, 2010. "Portfolio selection based on the mean-VaR efficient frontier," Quantitative Finance, Taylor & Francis Journals, vol. 10(8), pages 931-945.
  • Handle: RePEc:taf:quantf:v:10:y:2010:i:8:p:931-945
    DOI: 10.1080/14697681003652514
    as

    Download full text from publisher

    File URL: http://www.tandfonline.com/doi/abs/10.1080/14697681003652514
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/14697681003652514?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Neely, Christopher & Weller, Paul & Dittmar, Rob, 1997. "Is Technical Analysis in the Foreign Exchange Market Profitable? A Genetic Programming Approach," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 32(4), pages 405-426, December.
    2. Andersen, Torben G., 1998. "The Econometrics Of Financial Markets," Econometric Theory, Cambridge University Press, vol. 14(5), pages 671-685, October.
    3. Neely, Christopher J. & Weller, Paul A., 1999. "Technical trading rules in the European Monetary System," Journal of International Money and Finance, Elsevier, vol. 18(3), pages 429-458.
    4. Arjan Berkelaar & Phornchanok Cumperayot & Roy Kouwenberg, 2002. "The Effect of VaR Based Risk Management on Asset Prices and the Volatility Smile," European Financial Management, European Financial Management Association, vol. 8(2), pages 139-164, June.
    5. M. A. H. dempster & C. M. Jones, 2001. "A real-time adaptive trading system using genetic programming," Quantitative Finance, Taylor & Francis Journals, vol. 1(4), pages 397-413.
    6. Basak, Suleyman & Shapiro, Alexander, 2001. "Value-at-Risk-Based Risk Management: Optimal Policies and Asset Prices," The Review of Financial Studies, Society for Financial Studies, vol. 14(2), pages 371-405.
    7. Noe, Thomas H. & Pi, Lynn, 2000. "Learning dynamics, genetic algorithms, and corporate takeovers," Journal of Economic Dynamics and Control, Elsevier, vol. 24(2), pages 189-217, February.
    8. Bollerslev, Tim & Chou, Ray Y. & Kroner, Kenneth F., 1992. "ARCH modeling in finance : A review of the theory and empirical evidence," Journal of Econometrics, Elsevier, vol. 52(1-2), pages 5-59.
    9. Allen, Franklin & Karjalainen, Risto, 1999. "Using genetic algorithms to find technical trading rules," Journal of Financial Economics, Elsevier, vol. 51(2), pages 245-271, February.
    10. Campbell, John Y. & Lo, Andrew W. & MacKinlay, A. Craig & Whitelaw, Robert F., 1998. "The Econometrics Of Financial Markets," Macroeconomic Dynamics, Cambridge University Press, vol. 2(4), pages 559-562, December.
    11. Donald Lien & Y. K. Tse & Xibin Zhang, 2003. "Structural change and lead-lag relationship between the Nikkei spot index and futures price: a genetic programming approach," Quantitative Finance, Taylor & Francis Journals, vol. 3(2), pages 136-144.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Huang, Xiaoxia & Zhao, Tianyi, 2014. "Mean-chance model for portfolio selection based on uncertain measure," Insurance: Mathematics and Economics, Elsevier, vol. 59(C), pages 243-250.
    2. Ji Cao, 2017. "How does the underlying affect the risk-return profiles of structured products?," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 31(1), pages 27-47, February.
    3. Fernando Vega-Gámez & Pablo J. Alonso-González, 2024. "How likely is it to beat the target at different investment horizons: an approach using compositional data in strategic portfolios," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 10(1), pages 1-17, December.
    4. Moh. Alfi Amal & Herlina Napitupulu & Sukono, 2024. "Particle Swarm Optimization Algorithm for Determining Global Optima of Investment Portfolio Weight Using Mean-Value-at-Risk Model in Banking Sector Stocks," Mathematics, MDPI, vol. 12(24), pages 1-34, December.
    5. Chao Gong & Chunhui Xu & Ji Wang, 2018. "An Efficient Adaptive Real Coded Genetic Algorithm to Solve the Portfolio Choice Problem Under Cumulative Prospect Theory," Computational Economics, Springer;Society for Computational Economics, vol. 52(1), pages 227-252, June.
    6. Ravi Kashyap, 2024. "The Blockchain Risk Parity Line: Moving From The Efficient Frontier To The Final Frontier Of Investments," Papers 2407.09536, arXiv.org.
    7. Víctor M. Adame-García & Fernando Fernández-Rodríguez & Simón Sosvilla-Rivero, "undated". "Portfolios in the Ibex 35 index: Alternative methods to the traditional framework, a comparative with the naive diversification in a pre- and post- crisis context," Documentos de Trabajo del ICAE 2015-07, Universidad Complutense de Madrid, Facultad de Ciencias Económicas y Empresariales, Instituto Complutense de Análisis Económico, revised Jun 2015.
    8. Víctor Adame-García & Fernando Fernández-Rodríguez & Simón Sosvilla-Rivero, 2017. "“Resolution of optimization problems and construction of efficient portfolios: An application to the Euro Stoxx 50 index"," IREA Working Papers 201702, University of Barcelona, Research Institute of Applied Economics, revised Feb 2017.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Andrew W. Lo & Harry Mamaysky & Jiang Wang, 2000. "Foundations of Technical Analysis: Computational Algorithms, Statistical Inference, and Empirical Implementation," Journal of Finance, American Finance Association, vol. 55(4), pages 1705-1765, August.
    2. Lukas Menkhoff & Mark P. Taylor, 2007. "The Obstinate Passion of Foreign Exchange Professionals: Technical Analysis," Journal of Economic Literature, American Economic Association, vol. 45(4), pages 936-972, December.
    3. Tzu-Wen Kuo & Shu-Heng Chen,, 2003. "Genetic Programming and International Short-Term Capital Flow," Computing in Economics and Finance 2003 74, Society for Computational Economics.
    4. Lee, Chun I & Gleason, Kimberly C. & Mathur, Ike, 2001. "Trading rule profits in Latin American currency spot rates," International Review of Financial Analysis, Elsevier, vol. 10(2), pages 135-156.
    5. Yochanan Shachmurove & Uri BenZion & Paul Klein & Joseph Yagil, 2001. "A Moving Average Comparison of the Tel-Aviv 25 and S&P 500 Stock Indices," Penn CARESS Working Papers 4731f3394c43bebf4d3191c81, Penn Economics Department.
    6. Neely, Christopher J., 2003. "Risk-adjusted, ex ante, optimal technical trading rules in equity markets," International Review of Economics & Finance, Elsevier, vol. 12(1), pages 69-87.
    7. Cheol‐Ho Park & Scott H. Irwin, 2007. "What Do We Know About The Profitability Of Technical Analysis?," Journal of Economic Surveys, Wiley Blackwell, vol. 21(4), pages 786-826, September.
    8. Neely, Christopher J., 1999. "Target zones and conditional volatility: The role of realignments," Journal of Empirical Finance, Elsevier, vol. 6(2), pages 177-192, April.
    9. Ioana-Andreea Boboc & Mihai-Cristian Dinică, 2013. "An Algorithm for Testing the Efficient Market Hypothesis," PLOS ONE, Public Library of Science, vol. 8(10), pages 1-11, October.
    10. Neely, Christopher J. & Weller, Paul A., 2001. "Technical analysis and central bank intervention," Journal of International Money and Finance, Elsevier, vol. 20(7), pages 949-970, December.
    11. Simone Cirillo & Stefan Lloyd & Peter Nordin, 2014. "Evolving intraday foreign exchange trading strategies utilizing multiple instruments price series," Papers 1411.2153, arXiv.org.
    12. Rafał Dreżewski & Grzegorz Dziuban & Karol Pająk, 2018. "The Bio-Inspired Optimization of Trading Strategies and Its Impact on the Efficient Market Hypothesis and Sustainable Development Strategies," Sustainability, MDPI, vol. 10(5), pages 1-45, May.
    13. Shynkevich, Andrei, 2012. "Performance of technical analysis in growth and small cap segments of the US equity market," Journal of Banking & Finance, Elsevier, vol. 36(1), pages 193-208.
    14. Kozhan, Roman & Salmon, Mark, 2012. "The information content of a limit order book: The case of an FX market," Journal of Financial Markets, Elsevier, vol. 15(1), pages 1-28.
    15. Stephan Schulmeister, 2000. "Technical Analysis and Exchange Rate Dynamics," WIFO Studies, WIFO, number 25857.
    16. Trifan, Emanuela, 2004. "Entscheidungsregeln und ihr Einfluss auf den Aktienkurs," Darmstadt Discussion Papers in Economics 131, Darmstadt University of Technology, Department of Law and Economics.
    17. Chiarella, Carl & Ladley, Daniel, 2016. "Chasing trends at the micro-level: The effect of technical trading on order book dynamics," Journal of Banking & Finance, Elsevier, vol. 72(S), pages 119-131.
    18. Sid Ghoshal & Stephen J. Roberts, 2018. "Thresholded ConvNet Ensembles: Neural Networks for Technical Forecasting," Papers 1807.03192, arXiv.org, revised Jul 2018.
    19. Juan José Echavarría & Mauricio Villamizar & Diego Vásquez, 2010. "Impacto de las intervenciones cambiarias sobre el nivel y la volatilidad de la tasa de cambio en Colombia," Revista ESPE - Ensayos sobre Política Económica, Banco de la Republica de Colombia, vol. 28(62), pages 12-69, June.
    20. Adam Karp & Gary Van Vuuren, 2019. "Investment Implications Of The Fractal Market Hypothesis," Annals of Financial Economics (AFE), World Scientific Publishing Co. Pte. Ltd., vol. 14(01), pages 1-27, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:quantf:v:10:y:2010:i:8:p:931-945. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/RQUF20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.