IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v12y2024i23p3766-d1532731.html
   My bibliography  Save this article

Portfolio Selection Based on Modified CoVaR in Gaussian Framework

Author

Listed:
  • Piotr Jaworski

    (Institute of Mathematics, University of Warsaw, 02-097 Warszawa, Poland)

  • Anna Zalewska

    (Faculty of Mathematics and Information Science, Warsaw University of Technology, 00-662 Warszawa, Poland)

Abstract

We study a Mean-Risk model, where risk is measured by a Modified CoVaR (Conditional Value at Risk): CoVaR α , β ≤ ( X | Y ) = V a R β ( X | Y + V a R α ( Y ) ≤ 0 ) . We prove that in a Gaussian setting, for a sufficiently small β , such a model has a solution. There exists a portfolio that fulfills the given constraints and for which the risk is minimal. This is shown in relation to the mean–standard deviation portfolio, and numerical examples are provided.

Suggested Citation

  • Piotr Jaworski & Anna Zalewska, 2024. "Portfolio Selection Based on Modified CoVaR in Gaussian Framework," Mathematics, MDPI, vol. 12(23), pages 1-23, November.
  • Handle: RePEc:gam:jmathe:v:12:y:2024:i:23:p:3766-:d:1532731
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/12/23/3766/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/12/23/3766/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ravi Jagannathan & Tongshu Ma, 2003. "Risk Reduction in Large Portfolios: Why Imposing the Wrong Constraints Helps," Journal of Finance, American Finance Association, vol. 58(4), pages 1651-1683, August.
    2. J. Tobin, 1958. "Liquidity Preference as Behavior Towards Risk," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 25(2), pages 65-86.
    3. Bernardi, M. & Durante, F. & Jaworski, P., 2017. "CoVaR of families of copulas," Statistics & Probability Letters, Elsevier, vol. 120(C), pages 8-17.
    4. Frost, Peter A. & Savarino, James E., 1986. "An Empirical Bayes Approach to Efficient Portfolio Selection," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 21(3), pages 293-305, September.
    5. Black, Fischer, 1972. "Capital Market Equilibrium with Restricted Borrowing," The Journal of Business, University of Chicago Press, vol. 45(3), pages 444-455, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Thomas J. Brennan & Andrew W. Lo, 2010. "Impossible Frontiers," Management Science, INFORMS, vol. 56(6), pages 905-923, June.
    2. Penaranda, Francisco, 2007. "Portfolio choice beyond the traditional approach," LSE Research Online Documents on Economics 24481, London School of Economics and Political Science, LSE Library.
    3. Markus Hirschberger & Ralph E. Steuer & Sebastian Utz & Maximilian Wimmer & Yue Qi, 2013. "Computing the Nondominated Surface in Tri-Criterion Portfolio Selection," Operations Research, INFORMS, vol. 61(1), pages 169-183, February.
    4. Frank Schuhmacher & Hendrik Kohrs & Benjamin R. Auer, 2021. "Justifying Mean-Variance Portfolio Selection when Asset Returns Are Skewed," Management Science, INFORMS, vol. 67(12), pages 7812-7824, December.
    5. Francisco Peñaranda & Enrique Sentana, 2024. "Portfolio management with big data," Working Papers wp2024_2411, CEMFI.
    6. Michele Costola & Bertrand Maillet & Zhining Yuan & Xiang Zhang, 2024. "Mean–variance efficient large portfolios: a simple machine learning heuristic technique based on the two-fund separation theorem," Annals of Operations Research, Springer, vol. 334(1), pages 133-155, March.
    7. Gabriel Frahm, 2010. "Linear statistical inference for global and local minimum variance portfolios," Statistical Papers, Springer, vol. 51(4), pages 789-812, December.
    8. Hany Shawky & Ronald Forbes & Alan Frankle, 1983. "Liquidity Services and Capital Market Equilibrium: The Case for Money Market Mutual Funds," Journal of Financial Research, Southern Finance Association;Southwestern Finance Association, vol. 6(2), pages 141-152, June.
    9. Candelon, B. & Hurlin, C. & Tokpavi, S., 2012. "Sampling error and double shrinkage estimation of minimum variance portfolios," Journal of Empirical Finance, Elsevier, vol. 19(4), pages 511-527.
    10. Sven Husmann & Antoniya Shivarova & Rick Steinert, 2019. "Cross-validated covariance estimators for high-dimensional minimum-variance portfolios," Papers 1910.13960, arXiv.org, revised Oct 2020.
    11. Wang, Christina Dan & Chen, Zhao & Lian, Yimin & Chen, Min, 2022. "Asset selection based on high frequency Sharpe ratio," Journal of Econometrics, Elsevier, vol. 227(1), pages 168-188.
    12. ,, 2007. "Two-fund separation in dynamic general equilibrium," Theoretical Economics, Econometric Society, vol. 2(2), June.
    13. Demircioglu, Emre, 2015. "Testing of Capital Assets Pricing Model (CAPM) in Cement Sector & Power Generation and Distribution Sector in Turkey," MPRA Paper 61392, University Library of Munich, Germany.
    14. Benoît Carmichael & Gilles Boevi Koumou & Kevin Moran, 2021. "The RQE-CAPM : New insights about the pricing of idiosyncratic risk," CIRANO Working Papers 2021s-28, CIRANO.
    15. Rudi Schafer & Nils Fredrik Nilsson & Thomas Guhr, 2010. "Power mapping with dynamical adjustment for improved portfolio optimization," Quantitative Finance, Taylor & Francis Journals, vol. 10(1), pages 107-119.
    16. Istvan Varga-Haszonits & Fabio Caccioli & Imre Kondor, 2016. "Replica approach to mean-variance portfolio optimization," Papers 1606.08679, arXiv.org.
    17. Thomas Trier Bjerring & Omri Ross & Alex Weissensteiner, 2017. "Feature selection for portfolio optimization," Annals of Operations Research, Springer, vol. 256(1), pages 21-40, September.
    18. Frahm, Gabriel & Memmel, Christoph, 2008. "Dominating estimators for the global minimum variance portfolio," Discussion Papers in Econometrics and Statistics 2/08, University of Cologne, Institute of Econometrics and Statistics.
    19. Bilel Jarraya & Abdelfettah Bouri, 2013. "A Theoretical Assessment on Optimal Asset Allocations in Insurance Industry," International Journal of Finance & Banking Studies, Center for the Strategic Studies in Business and Finance, vol. 2(4), pages 30-44, October.
    20. Kolm, Petter N. & Tütüncü, Reha & Fabozzi, Frank J., 2014. "60 Years of portfolio optimization: Practical challenges and current trends," European Journal of Operational Research, Elsevier, vol. 234(2), pages 356-371.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:12:y:2024:i:23:p:3766-:d:1532731. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.