IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v12y2024i23p3718-d1530510.html
   My bibliography  Save this article

A Bivariate Extension of Type-II Generalized Crack Distribution for Modeling Heavy-Tailed Losses

Author

Listed:
  • Taehan Bae

    (Department of Mathematics and Statistics, University of Regina, Regina, SK S4S 0A2, Canada
    These authors contributed equally to this work.)

  • Hanson Quarshie

    (University of Regina, Regina, SK S4S 0A2, Canada
    These authors contributed equally to this work.)

Abstract

As an extension of the (univariate) Birnbaum–Saunders distribution, the Type-II generalized crack (GCR2) distribution, built on an appropriate base density, provides a sufficient level of flexibility to fit various distributional shapes, including heavy-tailed ones. In this paper, we develop a bivariate extension of the Type-II generalized crack distribution and study its dependency structure. For practical applications, three specific distributions, GCR2-Generalized Gaussian, GCR2-Student’s t , and GCR2-Logistic, are considered for marginals. The expectation-maximization algorithm is implemented to estimate the parameters in the bivariate GCR2 models. The model fitting results on a catastrophic loss dataset show that the bivariate GCR2 distribution based on the generalized Gaussian density fits the data significantly better than other alternative models, such as the bivariate lognormal distribution and some Archimedean copula models with lognormal or Pareto marginals.

Suggested Citation

  • Taehan Bae & Hanson Quarshie, 2024. "A Bivariate Extension of Type-II Generalized Crack Distribution for Modeling Heavy-Tailed Losses," Mathematics, MDPI, vol. 12(23), pages 1-26, November.
  • Handle: RePEc:gam:jmathe:v:12:y:2024:i:23:p:3718-:d:1530510
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/12/23/3718/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/12/23/3718/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. M. Jones, 2004. "Families of distributions arising from distributions of order statistics," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 13(1), pages 1-43, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Carol Alexander & José María Sarabia, 2012. "Quantile Uncertainty and Value‐at‐Risk Model Risk," Risk Analysis, John Wiley & Sons, vol. 32(8), pages 1293-1308, August.
    2. A. A. Ogunde & S. T. Fayose & B. Ajayi & D. O. Omosigho, 2020. "Properties, Inference and Applications of Alpha Power Extended Inverted Weibull Distribution," International Journal of Statistics and Probability, Canadian Center of Science and Education, vol. 9(6), pages 1-90, November.
    3. Ghosh Indranil, 2019. "On the Reliability for Some Bivariate Dependent Beta and Kumaraswamy Distributions: A Brief Survey," Stochastics and Quality Control, De Gruyter, vol. 34(2), pages 115-121, December.
    4. Abdus Saboor & Muhammad Nauman Khan & Gauss M. Cordeiro & Marcelino A. R. Pascoa & Juliano Bortolini & Shahid Mubeen, 2019. "Modified beta modified-Weibull distribution," Computational Statistics, Springer, vol. 34(1), pages 173-199, March.
    5. Alexander, Carol & Cordeiro, Gauss M. & Ortega, Edwin M.M. & Sarabia, José María, 2012. "Generalized beta-generated distributions," Computational Statistics & Data Analysis, Elsevier, vol. 56(6), pages 1880-1897.
    6. Ferreira, Jose T.A.S. & Steel, Mark F.J., 2007. "Model comparison of coordinate-free multivariate skewed distributions with an application to stochastic frontiers," Journal of Econometrics, Elsevier, vol. 137(2), pages 641-673, April.
    7. Carol Alexander & Jose Maria Sarabia, 2010. "Endogenizing Model Risk to Quantile Estimates," ICMA Centre Discussion Papers in Finance icma-dp2010-07, Henley Business School, University of Reading.
    8. Arthur Pewsey & Héctor Gómez & Heleno Bolfarine, 2012. "Likelihood-based inference for power distributions," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 21(4), pages 775-789, December.
    9. Jiong Liu & R. A. Serota, 2023. "Rethinking Generalized Beta family of distributions," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 96(2), pages 1-14, February.
    10. Amal S. Hassan & Said G. Nassr, 2019. "Power Lindley-G Family of Distributions," Annals of Data Science, Springer, vol. 6(2), pages 189-210, June.
    11. Gauss Cordeiro & Cláudio Cristino & Elizabeth Hashimoto & Edwin Ortega, 2013. "The beta generalized Rayleigh distribution with applications to lifetime data," Statistical Papers, Springer, vol. 54(1), pages 133-161, February.
    12. Bertrand K. Hassani & Wei Yang, 2016. "The Lila distribution and its applications in risk modelling," Documents de travail du Centre d'Economie de la Sorbonne 16068, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.
    13. Fischer, Matthias J., 2004. "The L-distribution and skew generalizations," Discussion Papers 63/2004, Friedrich-Alexander University Erlangen-Nuremberg, Chair of Statistics and Econometrics.
    14. Matthias Wagener & Andriette Bekker & Mohammad Arashi, 2021. "Mastering the Body and Tail Shape of a Distribution," Mathematics, MDPI, vol. 9(21), pages 1-22, October.
    15. Samuel Kotz & Donatella Vicari, 2005. "Survey of developments in the theory of continuous skewed distributions," Metron - International Journal of Statistics, Dipartimento di Statistica, Probabilità e Statistiche Applicate - University of Rome, vol. 0(2), pages 225-261.
    16. Fiaz Ahmad Bhatti & G. G. Hamedani & Mustafa Ç. Korkmaz & Munir Ahmad, 2018. "The transmuted geometric-quadratic hazard rate distribution: development, properties, characterizations and applications," Journal of Statistical Distributions and Applications, Springer, vol. 5(1), pages 1-23, December.
    17. Mehrzad Ghorbani & Seyed Fazel Bagheri & Mojtaba Alizadeh, 2017. "A New Family of Distributions: The Additive Modified Weibull Odd Log-logistic-G Poisson Family, Properties and Applications," Annals of Data Science, Springer, vol. 4(2), pages 249-287, June.
    18. Rashad A. R. Bantan & Christophe Chesneau & Farrukh Jamal & Mohammed Elgarhy, 2020. "On the Analysis of New COVID-19 Cases in Pakistan Using an Exponentiated Version of the M Family of Distributions," Mathematics, MDPI, vol. 8(6), pages 1-20, June.
    19. Zubair Ahmad, 2019. "The Hyperbolic Sine Rayleigh Distribution with Application to Bladder Cancer Susceptibility," Annals of Data Science, Springer, vol. 6(2), pages 211-222, June.
    20. Misgan Desale Nigusie, 2024. "Normal-beta exponential stochastic frontier model: Maximum simulated likelihood approach," Portuguese Economic Journal, Springer;Instituto Superior de Economia e Gestao, vol. 23(3), pages 489-504, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:12:y:2024:i:23:p:3718-:d:1530510. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.