IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v12y2024i21p3406-d1511153.html
   My bibliography  Save this article

Analysis of Neutral Implicit Stochastic Hilfer Fractional Differential Equation Involving Lévy Noise with Retarded and Advanced Arguments

Author

Listed:
  • Hamza Khalil

    (Department of Mathematics, University of Peshawar, Peshawar 25120, Pakistan)

  • Akbar Zada

    (Department of Mathematics, University of Peshawar, Peshawar 25120, Pakistan)

  • Mohamed Rhaima

    (Department of Statistics and Operations Research, College of Sciences, King Saud University, Riyadh 11451, Saudi Arabia)

  • Ioan-Lucian Popa

    (Department of Computing, Mathematics and Electronics, “1 Decembrie 1918” University of Alba Iulia, 510009 Alba Iulia, Romania
    Faculty of Mathematics and Computer Science, Transilvania University of Brasov, Iuliu Maniu Street 50, 500091 Brasov, Romania)

Abstract

This paper investigates the qualitative properties of the solutions for neutral implicit stochastic Hilfer fractional differential equations involving Lévy noise with retarded and advanced arguments. The existence property of the solution of the aforementioned equation is demonstrated by the Mónch condition, and the uniqueness is demonstrated by the remarkable fixed point of Banach. In addition, we examine the Hyers–Ulam ( HU ) stability of the presented mathematical models. To substantiate our theoretical conclusions, a real-world example is included to illustrate their practical application.

Suggested Citation

  • Hamza Khalil & Akbar Zada & Mohamed Rhaima & Ioan-Lucian Popa, 2024. "Analysis of Neutral Implicit Stochastic Hilfer Fractional Differential Equation Involving Lévy Noise with Retarded and Advanced Arguments," Mathematics, MDPI, vol. 12(21), pages 1-15, October.
  • Handle: RePEc:gam:jmathe:v:12:y:2024:i:21:p:3406-:d:1511153
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/12/21/3406/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/12/21/3406/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Manzoor Ahmad & Akbar Zada & Jihad Ahmad & Mohamed A. Abd El Salam & Ali Ahmadian, 2022. "Analysis of Stochastic Weighted Impulsive Neutral ψ-Hilfer Integro-Fractional Differential System with Delay," Mathematical Problems in Engineering, Hindawi, vol. 2022, pages 1-23, March.
    2. Kui Liu & Michal Fečkan & D. O’Regan & JinRong Wang, 2019. "Hyers–Ulam Stability and Existence of Solutions for Differential Equations with Caputo–Fabrizio Fractional Derivative," Mathematics, MDPI, vol. 7(4), pages 1-14, April.
    3. Khan, Aziz & Khan, Hasib & Gómez-Aguilar, J.F. & Abdeljawad, Thabet, 2019. "Existence and Hyers-Ulam stability for a nonlinear singular fractional differential equations with Mittag-Leffler kernel," Chaos, Solitons & Fractals, Elsevier, vol. 127(C), pages 422-427.
    4. Zada, Akbar & Ali, Wajid & Park, Choonkil, 2019. "Ulam’s type stability of higher order nonlinear delay differential equations via integral inequality of Grönwall-Bellman-Bihari’s type," Applied Mathematics and Computation, Elsevier, vol. 350(C), pages 60-65.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rafia Majeed & Binlin Zhang & Mehboob Alam, 2023. "Fractional Langevin Coupled System with Stieltjes Integral Conditions," Mathematics, MDPI, vol. 11(10), pages 1-14, May.
    2. Khan, Hasib & Alam, Khurshaid & Gulzar, Haseena & Etemad, Sina & Rezapour, Shahram, 2022. "A case study of fractal-fractional tuberculosis model in China: Existence and stability theories along with numerical simulations," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 198(C), pages 455-473.
    3. Khan, Hasib & Ibrahim, Muhammad & Abdel-Aty, Abdel-Haleem & Khashan, M. Motawi & Khan, Farhat Ali & Khan, Aziz, 2021. "A fractional order Covid-19 epidemic model with Mittag-Leffler kernel," Chaos, Solitons & Fractals, Elsevier, vol. 148(C).
    4. Kuang, Daipeng & Li, Jianli & Gao, Dongdong & Luo, Danfeng, 2024. "Stochastic near-optimal control for a system with Markovian switching and Lévy noise," Chaos, Solitons & Fractals, Elsevier, vol. 178(C).
    5. Rhaima, Mohamed, 2023. "Ulam–Hyers stability for an impulsive Caputo–Hadamard fractional neutral stochastic differential equations with infinite delay," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 210(C), pages 281-295.
    6. Usman Riaz & Akbar Zada & Zeeshan Ali & Ioan-Lucian Popa & Shahram Rezapour & Sina Etemad, 2021. "On a Riemann–Liouville Type Implicit Coupled System via Generalized Boundary Conditions," Mathematics, MDPI, vol. 9(11), pages 1-22, May.
    7. Ullah, Malik Zaka & Mallawi, Fouad & Baleanu, Dumitru & Alshomrani, Ali Saleh, 2020. "A new fractional study on the chaotic vibration and state-feedback control of a nonlinear suspension system," Chaos, Solitons & Fractals, Elsevier, vol. 132(C).
    8. Khan, Hasib & Ahmed, Saim & Alzabut, Jehad & Azar, Ahmad Taher, 2023. "A generalized coupled system of fractional differential equations with application to finite time sliding mode control for Leukemia therapy," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    9. Logeswari, K. & Ravichandran, C., 2020. "A new exploration on existence of fractional neutral integro- differential equations in the concept of Atangana–Baleanu derivative," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 544(C).
    10. Binlin Zhang & Rafia Majeed & Mehboob Alam, 2022. "On Fractional Langevin Equations with Stieltjes Integral Conditions," Mathematics, MDPI, vol. 10(20), pages 1-16, October.
    11. Shah, Syed Omar & Zada, Akbar, 2019. "Existence, uniqueness and stability of solution to mixed integral dynamic systems with instantaneous and noninstantaneous impulses on time scales," Applied Mathematics and Computation, Elsevier, vol. 359(C), pages 202-213.
    12. Rhaima, Mohamed & Mchiri, Lassaad & Ben Makhlouf, Abdellatif & Ahmed, Hassen, 2024. "Ulam type stability for mixed Hadamard and Riemann–Liouville Fractional Stochastic Differential Equations," Chaos, Solitons & Fractals, Elsevier, vol. 178(C).
    13. Alam, Mehboob & Shah, Dildar, 2021. "Hyers–Ulam stability of coupled implicit fractional integro-differential equations with Riemann–Liouville derivatives," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
    14. Singh, Ajeet & Shukla, Anurag & Vijayakumar, V. & Udhayakumar, R., 2021. "Asymptotic stability of fractional order (1,2] stochastic delay differential equations in Banach spaces," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
    15. Shuyi Wang & Fanwei Meng, 2021. "Ulam Stability of n -th Order Delay Integro-Differential Equations," Mathematics, MDPI, vol. 9(23), pages 1-17, November.
    16. Akbar Zada & Shaheen Fatima & Zeeshan Ali & Jiafa Xu & Yujun Cui, 2019. "Stability Results for a Coupled System of Impulsive Fractional Differential Equations," Mathematics, MDPI, vol. 7(10), pages 1-29, October.
    17. Muñoz-Vázquez, Aldo Jonathan & Sánchez-Torres, Juan Diego & Defoort, Michael & Boulaaras, Salah, 2021. "Predefined-time convergence in fractional-order systems," Chaos, Solitons & Fractals, Elsevier, vol. 143(C).
    18. Ain, Qura tul & Khan, Aziz & Ullah, Muhammad Irfan & Alqudah, Manar A. & Abdeljawad, Thabet, 2022. "On fractional impulsive system for methanol detoxification in human body," Chaos, Solitons & Fractals, Elsevier, vol. 160(C).
    19. Nurlana Alimbekova & Abdumauvlen Berdyshev & Muratkan Madiyarov & Yerlan Yergaliyev, 2024. "Finite Element Method for a Fractional-Order Filtration Equation with a Transient Filtration Law," Mathematics, MDPI, vol. 12(16), pages 1-20, August.
    20. Devi, Amita & Kumar, Anoop, 2022. "Hyers–Ulam stability and existence of solution for hybrid fractional differential equation with p-Laplacian operator," Chaos, Solitons & Fractals, Elsevier, vol. 156(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:12:y:2024:i:21:p:3406-:d:1511153. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.