IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v178y2024ics0960077923012584.html
   My bibliography  Save this article

Ulam type stability for mixed Hadamard and Riemann–Liouville Fractional Stochastic Differential Equations

Author

Listed:
  • Rhaima, Mohamed
  • Mchiri, Lassaad
  • Ben Makhlouf, Abdellatif
  • Ahmed, Hassen

Abstract

This study investigates the existence and Ulam–Hyers stability (UHS) results in the context of mixed Hadamard and Riemann–Liouville Fractional Stochastic Differential Equations (HRFSDEs). The primary focus is on establishing the existence and uniqueness of solutions through the application of the Banach Fixed point Theorem (BFT) coupled with standard stochastic analysis techniques. Subsequently, the UHS results for mixed HRFSDEs are explored utilizing the powerful tool of the Gronwall inequality. The theoretical findings shed light on the stability properties of the considered equations. To validate the obtained results, two numerical examples are presented, demonstrating the practical implications of the stability analysis.

Suggested Citation

  • Rhaima, Mohamed & Mchiri, Lassaad & Ben Makhlouf, Abdellatif & Ahmed, Hassen, 2024. "Ulam type stability for mixed Hadamard and Riemann–Liouville Fractional Stochastic Differential Equations," Chaos, Solitons & Fractals, Elsevier, vol. 178(C).
  • Handle: RePEc:eee:chsofr:v:178:y:2024:i:c:s0960077923012584
    DOI: 10.1016/j.chaos.2023.114356
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077923012584
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2023.114356?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ahmadova, Arzu & Mahmudov, Nazim I., 2021. "Ulam–Hyers stability of Caputo type fractional stochastic neutral differential equations," Statistics & Probability Letters, Elsevier, vol. 168(C).
    2. Rhaima, Mohamed, 2023. "Ulam–Hyers stability for an impulsive Caputo–Hadamard fractional neutral stochastic differential equations with infinite delay," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 210(C), pages 281-295.
    3. Laskin, Nick, 2000. "Fractional market dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 287(3), pages 482-492.
    4. Ben Makhlouf, Abdellatif & Mchiri, Lassaad, 2022. "Some results on the study of Caputo–Hadamard fractional stochastic differential equations," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).
    5. Manzoor Ahmad & Akbar Zada & Jihad Ahmad & Mohamed A. Abd El Salam & Ali Ahmadian, 2022. "Analysis of Stochastic Weighted Impulsive Neutral ψ-Hilfer Integro-Fractional Differential System with Delay," Mathematical Problems in Engineering, Hindawi, vol. 2022, pages 1-23, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rhaima, Mohamed, 2023. "Ulam–Hyers stability for an impulsive Caputo–Hadamard fractional neutral stochastic differential equations with infinite delay," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 210(C), pages 281-295.
    2. Kahouli, Omar & Ben Makhlouf, Abdellatif & Mchiri, Lassaad & Rguigui, Hafedh, 2023. "Hyers–Ulam stability for a class of Hadamard fractional Itô–Doob stochastic integral equations," Chaos, Solitons & Fractals, Elsevier, vol. 166(C).
    3. Peng, Qiu & Jian, Jigui, 2023. "Synchronization analysis of fractional-order inertial-type neural networks with time delays," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 205(C), pages 62-77.
    4. Yi Chen & Jing Dong & Hao Ni, 2021. "ɛ-Strong Simulation of Fractional Brownian Motion and Related Stochastic Differential Equations," Mathematics of Operations Research, INFORMS, vol. 46(2), pages 559-594, May.
    5. Abdelhamid Mohammed Djaouti & Zareen A. Khan & Muhammad Imran Liaqat & Ashraf Al-Quran, 2024. "A Study of Some Generalized Results of Neutral Stochastic Differential Equations in the Framework of Caputo–Katugampola Fractional Derivatives," Mathematics, MDPI, vol. 12(11), pages 1-20, May.
    6. Ge, Zheng-Ming & Yi, Chang-Xian, 2007. "Chaos in a nonlinear damped Mathieu system, in a nano resonator system and in its fractional order systems," Chaos, Solitons & Fractals, Elsevier, vol. 32(1), pages 42-61.
    7. Pratap, A. & Raja, R. & Cao, J. & Lim, C.P. & Bagdasar, O., 2019. "Stability and pinning synchronization analysis of fractional order delayed Cohen–Grossberg neural networks with discontinuous activations," Applied Mathematics and Computation, Elsevier, vol. 359(C), pages 241-260.
    8. Tam, Lap Mou & Si Tou, Wai Meng, 2008. "Parametric study of the fractional-order Chen–Lee system," Chaos, Solitons & Fractals, Elsevier, vol. 37(3), pages 817-826.
    9. G. Fern'andez-Anaya & L. A. Quezada-T'ellez & B. Nu~nez-Zavala & D. Brun-Battistini, 2019. "Katugampola Generalized Conformal Derivative Approach to Inada Conditions and Solow-Swan Economic Growth Model," Papers 1907.00130, arXiv.org.
    10. Lu, Jun Guo & Chen, Guanrong, 2006. "A note on the fractional-order Chen system," Chaos, Solitons & Fractals, Elsevier, vol. 27(3), pages 685-688.
    11. Sheu, Long-Jye & Chen, Hsien-Keng & Chen, Juhn-Horng & Tam, Lap-Mou & Chen, Wen-Chin & Lin, Kuang-Tai & Kang, Yuan, 2008. "Chaos in the Newton–Leipnik system with fractional order," Chaos, Solitons & Fractals, Elsevier, vol. 36(1), pages 98-103.
    12. Laskin, Nick, 2018. "Valuing options in shot noise market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 502(C), pages 518-533.
    13. Ali Balcı, Mehmet, 2017. "Time fractional capital-induced labor migration model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 477(C), pages 91-98.
    14. Majee, Suvankar & Jana, Soovoojeet & Das, Dhiraj Kumar & Kar, T.K., 2022. "Global dynamics of a fractional-order HFMD model incorporating optimal treatment and stochastic stability," Chaos, Solitons & Fractals, Elsevier, vol. 161(C).
    15. Wang, Fei & Yang, Yongqing, 2018. "Intermittent synchronization of fractional order coupled nonlinear systems based on a new differential inequality," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 142-152.
    16. Lu, Jun Guo, 2006. "Nonlinear observer design to synchronize fractional-order chaotic systems via a scalar transmitted signal," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 359(C), pages 107-118.
    17. David, S.A. & Machado, J.A.T. & Quintino, D.D. & Balthazar, J.M., 2016. "Partial chaos suppression in a fractional order macroeconomic model," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 122(C), pages 55-68.
    18. Shi, Jianping & He, Ke & Fang, Hui, 2022. "Chaos, Hopf bifurcation and control of a fractional-order delay financial system," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 194(C), pages 348-364.
    19. Valentina V. Tarasova & Vasily E. Tarasov, 2017. "Logistic map with memory from economic model," Papers 1712.09092, arXiv.org.
    20. Tarasov, Vasily E. & Tarasova, Valentina V., 2018. "Macroeconomic models with long dynamic memory: Fractional calculus approach," Applied Mathematics and Computation, Elsevier, vol. 338(C), pages 466-486.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:178:y:2024:i:c:s0960077923012584. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.