IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v174y2023ics0960077923008020.html
   My bibliography  Save this article

A generalized coupled system of fractional differential equations with application to finite time sliding mode control for Leukemia therapy

Author

Listed:
  • Khan, Hasib
  • Ahmed, Saim
  • Alzabut, Jehad
  • Azar, Ahmad Taher

Abstract

In this article, a general nonlinear system of functional differential equations for two types of operators is considered. One of them includes RDβi which are n-operators in the Riemann–Liouville’s sense of derivative while the second is based on a series operator L(RDϱi) where all the RDϱi’s are Riemann–Liouville’s fractional operators with the assumption of βi,ϱi∈(0,1]. These two types of operators are combined with the help of a nonlinear Φp-operator. This novel construction is more useful in scientific problems. The novel system of FDEs is studied for the solution existence, uniqueness analysis, stability analysis and numerical computation is also carried out. For an application of the presumed general coupled system, a fractional order Leukemia therapy model with its numerical simulations and optimization, is given. The Leukemia model describes the propagation of infected cells. A fractional-order finite-time terminal sliding mode control is designed to control Leukemia for the fractional-order dynamics for eliminating Leukemic cells while maintaining an adequate number of normal cells by the application of a chemotherapeutic agent that is considered as safe. The Lyapunov stability theory has been employed to analyze the controllers. The comparative simulations are presented for a better illustration of the work and show the superior tracking and convergence performance of the proposed control method.

Suggested Citation

  • Khan, Hasib & Ahmed, Saim & Alzabut, Jehad & Azar, Ahmad Taher, 2023. "A generalized coupled system of fractional differential equations with application to finite time sliding mode control for Leukemia therapy," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
  • Handle: RePEc:eee:chsofr:v:174:y:2023:i:c:s0960077923008020
    DOI: 10.1016/j.chaos.2023.113901
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077923008020
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2023.113901?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Khan, Hasib & Jarad, Fahd & Abdeljawad, Thabet & Khan, Aziz, 2019. "A singular ABC-fractional differential equation with p-Laplacian operator," Chaos, Solitons & Fractals, Elsevier, vol. 129(C), pages 56-61.
    2. Hasib Khan & Jehad Alzabut & Haseena Gulzar & Osman Tunç & Sandra Pinelas, 2023. "On System of Variable Order Nonlinear p-Laplacian Fractional Differential Equations with Biological Application," Mathematics, MDPI, vol. 11(8), pages 1-17, April.
    3. Zhijie Li & Jie Ding & Min Wu & Jinxing Lin, 2021. "Discrete fractional order PID controller design for nonlinear systems," International Journal of Systems Science, Taylor & Francis Journals, vol. 52(15), pages 3206-3213, November.
    4. Khan, Aziz & Khan, Hasib & Gómez-Aguilar, J.F. & Abdeljawad, Thabet, 2019. "Existence and Hyers-Ulam stability for a nonlinear singular fractional differential equations with Mittag-Leffler kernel," Chaos, Solitons & Fractals, Elsevier, vol. 127(C), pages 422-427.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Khan, Hasib & Ibrahim, Muhammad & Abdel-Aty, Abdel-Haleem & Khashan, M. Motawi & Khan, Farhat Ali & Khan, Aziz, 2021. "A fractional order Covid-19 epidemic model with Mittag-Leffler kernel," Chaos, Solitons & Fractals, Elsevier, vol. 148(C).
    2. Logeswari, K. & Ravichandran, C., 2020. "A new exploration on existence of fractional neutral integro- differential equations in the concept of Atangana–Baleanu derivative," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 544(C).
    3. Devi, Amita & Kumar, Anoop, 2022. "Hyers–Ulam stability and existence of solution for hybrid fractional differential equation with p-Laplacian operator," Chaos, Solitons & Fractals, Elsevier, vol. 156(C).
    4. Mircea Ivanescu & Ioan Dumitrache & Nirvana Popescu & Decebal Popescu, 2021. "Control Techniques for a Class of Fractional Order Systems," Mathematics, MDPI, vol. 9(19), pages 1-17, September.
    5. Ravichandran, C. & Logeswari, K. & Panda, Sumati Kumari & Nisar, Kottakkaran Sooppy, 2020. "On new approach of fractional derivative by Mittag-Leffler kernel to neutral integro-differential systems with impulsive conditions," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    6. Khan, Hasib & Alam, Khurshaid & Gulzar, Haseena & Etemad, Sina & Rezapour, Shahram, 2022. "A case study of fractal-fractional tuberculosis model in China: Existence and stability theories along with numerical simulations," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 198(C), pages 455-473.
    7. Rhaima, Mohamed, 2023. "Ulam–Hyers stability for an impulsive Caputo–Hadamard fractional neutral stochastic differential equations with infinite delay," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 210(C), pages 281-295.
    8. Ullah, Malik Zaka & Mallawi, Fouad & Baleanu, Dumitru & Alshomrani, Ali Saleh, 2020. "A new fractional study on the chaotic vibration and state-feedback control of a nonlinear suspension system," Chaos, Solitons & Fractals, Elsevier, vol. 132(C).
    9. Hamza Khalil & Akbar Zada & Mohamed Rhaima & Ioan-Lucian Popa, 2024. "Analysis of Neutral Implicit Stochastic Hilfer Fractional Differential Equation Involving Lévy Noise with Retarded and Advanced Arguments," Mathematics, MDPI, vol. 12(21), pages 1-15, October.
    10. Hasib Khan & Jehad Alzabut & Haseena Gulzar & Osman Tunç & Sandra Pinelas, 2023. "On System of Variable Order Nonlinear p-Laplacian Fractional Differential Equations with Biological Application," Mathematics, MDPI, vol. 11(8), pages 1-17, April.
    11. Muñoz-Vázquez, Aldo Jonathan & Sánchez-Torres, Juan Diego & Defoort, Michael & Boulaaras, Salah, 2021. "Predefined-time convergence in fractional-order systems," Chaos, Solitons & Fractals, Elsevier, vol. 143(C).
    12. Ain, Qura tul & Khan, Aziz & Ullah, Muhammad Irfan & Alqudah, Manar A. & Abdeljawad, Thabet, 2022. "On fractional impulsive system for methanol detoxification in human body," Chaos, Solitons & Fractals, Elsevier, vol. 160(C).
    13. Tong Yuan & Hongli Yang & Ivan Ganchev Ivanov, 2021. "Reachability and Observability of Positive Linear Electrical Circuits Systems Described by Generalized Fractional Derivatives," Mathematics, MDPI, vol. 9(22), pages 1-16, November.
    14. Ávalos-Ruíz, L.F. & Zúñiga-Aguilar, C.J. & Gómez-Aguilar, J.F. & Cortes-Campos, H.M. & Lavín-Delgado, J.E., 2023. "A RGB image encryption technique using chaotic maps of fractional variable-order based on DNA encoding," Chaos, Solitons & Fractals, Elsevier, vol. 177(C).
    15. Li, Xiaoyan, 2021. "Comment for “Existence and Hyers-Ulam stability for a nonlinear singular fractional differential equations with Mittag-Leffler kernel”," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    16. Uroosa Arshad & Mariam Sultana & Ali Hasan Ali & Omar Bazighifan & Areej A. Al-moneef & Kamsing Nonlaopon, 2022. "Numerical Solutions of Fractional-Order Electrical RLC Circuit Equations via Three Numerical Techniques," Mathematics, MDPI, vol. 10(17), pages 1-16, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:174:y:2023:i:c:s0960077923008020. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.