IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v12y2024i21p3377-d1508776.html
   My bibliography  Save this article

Boosted Whittaker–Henderson Graduation

Author

Listed:
  • Zihan Jin

    (Graduate School of Humanities and Social Sciences, Hiroshima University, 1-2-1 Kagamiyama, Higashi-Hiroshima 739-8525, Japan)

  • Hiroshi Yamada

    (Graduate School of Humanities and Social Sciences, Hiroshima University, 1-2-1 Kagamiyama, Higashi-Hiroshima 739-8525, Japan)

Abstract

The Whittaker–Henderson (WH) graduation is a smoothing method for equally spaced one-dimensional data such as time series. It includes the Bohlmann filter, the Hodrick–Prescott (HP) filter, and the Whittaker graduation as special cases. Among them, the HP filter is the most prominent trend-cycle decomposition method for macroeconomic time series such as real gross domestic product. Recently, a modification of the HP filter, the boosted HP (bHP) filter, has been developed, and several studies have been conducted. The basic idea of the modification is to achieve more desirable smoothing by extracting long-term fluctuations remaining in the smoothing residuals. Inspired by the modification, this paper develops the boosted version of the WH graduation, which includes the bHP filter as a special case. Then, we establish its properties that are fundamental for applied work. To investigate the properties, we use a spectral decomposition of the penalty matrix of the WH graduation

Suggested Citation

  • Zihan Jin & Hiroshi Yamada, 2024. "Boosted Whittaker–Henderson Graduation," Mathematics, MDPI, vol. 12(21), pages 1-18, October.
  • Handle: RePEc:gam:jmathe:v:12:y:2024:i:21:p:3377-:d:1508776
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/12/21/3377/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/12/21/3377/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Peter C. B. Phillips & Zhentao Shi, 2021. "Boosting: Why You Can Use The Hp Filter," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 62(2), pages 521-570, May.
    2. Hodrick, Robert J & Prescott, Edward C, 1997. "Postwar U.S. Business Cycles: An Empirical Investigation," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 29(1), pages 1-16, February.
    3. Peter Phillips, 2010. "Two New Zealand pioneer econometricians," New Zealand Economic Papers, Taylor & Francis Journals, vol. 44(1), pages 1-26.
    4. Yamada, Hiroshi, 2020. "A Smoothing Method That Looks Like The Hodrick–Prescott Filter," Econometric Theory, Cambridge University Press, vol. 36(5), pages 961-981, October.
    5. Weinert, Howard L., 2007. "Efficient computation for Whittaker-Henderson smoothing," Computational Statistics & Data Analysis, Elsevier, vol. 52(2), pages 959-974, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hiroshi Yamada & Ruoyi Bao, 2022. "$$\ell _{1}$$ ℓ 1 Common Trend Filtering," Computational Economics, Springer;Society for Computational Economics, vol. 59(3), pages 1005-1025, March.
    2. Ruixue Du & Hiroshi Yamada, 2020. "Principle of Duality in Cubic Smoothing Spline," Mathematics, MDPI, vol. 8(10), pages 1-19, October.
    3. Hiroshi Yamada, 2023. "Quantile regression version of Hodrick–Prescott filter," Empirical Economics, Springer, vol. 64(4), pages 1631-1645, April.
    4. Hall, Viv B & Thomson, Peter, 2022. "A boosted HP filter for business cycle analysis: evidence from New Zealand’s small open economy," Working Paper Series 9473, Victoria University of Wellington, School of Economics and Finance.
    5. Morana, Claudio, 2024. "A new macro-financial condition index for the euro area," Econometrics and Statistics, Elsevier, vol. 29(C), pages 64-87.
    6. Sheng Zhang & Yifu Yang & Chengdi Ding & Zhongquan Miao, 2023. "The Impact of International Relations Patterns on China’s Energy Security Supply, Demand, and Sustainable Development: An Exploration of Oil Demand and Sustainability Goals," Sustainability, MDPI, vol. 15(17), pages 1-12, August.
    7. Viv B. Hall & Peter Thomson, 2021. "Does Hamilton’s OLS Regression Provide a “better alternative” to the Hodrick-Prescott Filter? A New Zealand Business Cycle Perspective," Journal of Business Cycle Research, Springer;Centre for International Research on Economic Tendency Surveys (CIRET), vol. 17(2), pages 151-183, November.
    8. Melina Dritsaki & Chaido Dritsaki, 2022. "Comparison of HP Filter and the Hamilton’s Regression," Mathematics, MDPI, vol. 10(8), pages 1-18, April.
    9. Baffes, John & Kabundi, Alain, 2023. "Commodity price shocks: Order within chaos?," Resources Policy, Elsevier, vol. 83(C).
    10. Ziwei Mei & Zhentao Shi & Peter C. B. Phillips, 2022. "The boosted HP filter is more general than you might think," Cowles Foundation Discussion Papers 2348, Cowles Foundation for Research in Economics, Yale University.
    11. Lee, Sokbae & Liao, Yuan & Seo, Myung Hwan & Shin, Youngki, 2021. "Sparse HP filter: Finding kinks in the COVID-19 contact rate," Journal of Econometrics, Elsevier, vol. 220(1), pages 158-180.
    12. Haitham A. Al-Zoubi, 2024. "An affine model for short rates when monetary policy is path dependent," Review of Derivatives Research, Springer, vol. 27(2), pages 151-201, July.
    13. Canhong Wen & Xueqin Wang & Aijun Zhang, 2023. "ℓ 0 Trend Filtering," INFORMS Journal on Computing, INFORMS, vol. 35(6), pages 1491-1510, November.
    14. Baffes, John & Kabundi, Alain, 2024. "Do supercycles dominate commodity price movements?," Economics Letters, Elsevier, vol. 237(C).
    15. Giuliano Queiroz Ferreira & Leonardo Bornacki Mattos, 2022. "Regime-dependent price puzzle in the Brazilian economy: evidence from VAR and FAVAR approaches," SN Business & Economics, Springer, vol. 2(9), pages 1-28, September.
    16. Peter C. B. Phillips & Sainan Jin, 2021. "Business Cycles, Trend Elimination, And The Hp Filter," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 62(2), pages 469-520, May.
    17. Viv B Hall & Peter Thomson, 2020. "Does Hamilton’s OLS regression provide a “better alternative†to the Hodrick-Prescott filter? A New Zealand business cycle perspective," CAMA Working Papers 2020-71, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    18. Hiroshi Yamada & Ruixue Du, 2018. "Some Results on ℓ 1 Polynomial Trend Filtering," Econometrics, MDPI, vol. 6(3), pages 1-10, July.
    19. Lubos Hanus & Lukas Vacha, 2015. "Business cycle synchronization of the Visegrad Four and the European Union," Working Papers IES 2015/19, Charles University Prague, Faculty of Social Sciences, Institute of Economic Studies, revised Jul 2015.
    20. Thomas Baudin & Robert Stelter, 2022. "The rural exodus and the rise of Europe," Journal of Economic Growth, Springer, vol. 27(3), pages 365-414, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:12:y:2024:i:21:p:3377-:d:1508776. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.