IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2023i20p4339-d1262649.html
   My bibliography  Save this article

Dynamical Sphere Regrouping Particle Swarm Optimization: A Proposed Algorithm for Dealing with PSO Premature Convergence in Large-Scale Global Optimization

Author

Listed:
  • Martín Montes Rivera

    (Research and Postgraduate Studies Department, Universidad Politécnica de Aguascalientes, Aguascalientes 20342, Mexico)

  • Carlos Guerrero-Mendez

    (Unidad Académica de Ciencia y Tecnologia de la Luz y la Materia, Universidad Autónoma de Zacatecas, Campus es Parque de Ciencia y Tecnología QUANTUM, Cto., Marie Curie S/N, Zacatecas 98160, Mexico)

  • Daniela Lopez-Betancur

    (Unidad Académica de Ciencia y Tecnologia de la Luz y la Materia, Universidad Autónoma de Zacatecas, Campus es Parque de Ciencia y Tecnología QUANTUM, Cto., Marie Curie S/N, Zacatecas 98160, Mexico)

  • Tonatiuh Saucedo-Anaya

    (Unidad Académica de Ciencia y Tecnologia de la Luz y la Materia, Universidad Autónoma de Zacatecas, Campus es Parque de Ciencia y Tecnología QUANTUM, Cto., Marie Curie S/N, Zacatecas 98160, Mexico)

Abstract

Optimizing large-scale numerical problems is a significant challenge with numerous real-world applications. The optimization process is complex due to the multi-dimensional search spaces and possesses several locally optimal regions. In response to this issue, various metaheuristic algorithms and variations have been developed, including evolutionary and swarm intelligence algorithms and hybrids of different artificial intelligence techniques. Previous studies have shown that swarm intelligence algorithms like PSO perform poorly in high-dimensional spaces, even with algorithms focused on reducing the search space. However, we propose a modified version of the PSO algorithm called Dynamical Sphere Regrouping PSO (DSRegPSO) to avoid stagnation in local optimal regions. DSRegPSO is based on the PSO algorithm and modifies inertial behavior with a regrouping dynamical sphere mechanism and a momentum conservation physics effect. These behaviors maintain the swarm’s diversity and regulate the exploration and exploitation of the search space while avoiding stagnation in optimal local regions. The DSRegPSO mechanisms mimic the behavior of birds, moving particles similar to birds when they look for a new food source. Additionally, the momentum conservation effect mimics how birds react to collisions with the boundaries in their search space or when they are looking for food. We evaluated DSRegPSO by testing 15 optimizing functions with up to 1000 dimensions of the CEC’13 benchmark, a standard for evaluating Large-Scale Global Optimization used in Congress on Evolutionary Computation, and several journals. Our proposal improves the behavior of all variants of PSO registered in the toolkit of comparison for CEC’13 and obtains the best result in the non-separable functions against all the algorithms.

Suggested Citation

  • Martín Montes Rivera & Carlos Guerrero-Mendez & Daniela Lopez-Betancur & Tonatiuh Saucedo-Anaya, 2023. "Dynamical Sphere Regrouping Particle Swarm Optimization: A Proposed Algorithm for Dealing with PSO Premature Convergence in Large-Scale Global Optimization," Mathematics, MDPI, vol. 11(20), pages 1-40, October.
  • Handle: RePEc:gam:jmathe:v:11:y:2023:i:20:p:4339-:d:1262649
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/20/4339/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/20/4339/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sedighizadeh, Davoud & Masehian, Ellips & Sedighizadeh, Mostafa & Akbaripour, Hossein, 2021. "GEPSO: A new generalized particle swarm optimization algorithm," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 179(C), pages 194-212.
    2. Emile Glorieux & Bo Svensson & Fredrik Danielsson & Bengt Lennartson, 2017. "Constructive cooperative coevolution for large-scale global optimisation," Journal of Heuristics, Springer, vol. 23(6), pages 449-469, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Martín Montes Rivera & Carlos Guerrero-Mendez & Daniela Lopez-Betancur & Tonatiuh Saucedo-Anaya, 2024. "Dynamical Sphere Regrouping Particle Swarm Optimization Programming: An Automatic Programming Algorithm Avoiding Premature Convergence," Mathematics, MDPI, vol. 12(19), pages 1-53, September.
    2. Zhong Guan & Hui Wang & Zhi Li & Xiaohu Luo & Xi Yang & Jugang Fang & Qiang Zhao, 2024. "Multi-Objective Optimal Scheduling of Microgrids Based on Improved Particle Swarm Algorithm," Energies, MDPI, vol. 17(7), pages 1-20, April.
    3. Chenyang Gao & Teng Li & Yuelin Gao & Ziyu Zhang, 2024. "A Comprehensive Multi-Strategy Enhanced Biogeography-Based Optimization Algorithm for High-Dimensional Optimization and Engineering Design Problems," Mathematics, MDPI, vol. 12(3), pages 1-35, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kezong Tang & Xiong-Fei Wei & Yuan-Hao Jiang & Zi-Wei Chen & Lihua Yang, 2023. "An Adaptive Ant Colony Optimization for Solving Large-Scale Traveling Salesman Problem," Mathematics, MDPI, vol. 11(21), pages 1-26, October.
    2. González-Parra, Gilberto & Villanueva-Oller, Javier & Navarro-González, F.J. & Ceberio, Josu & Luebben, Giulia, 2024. "A network-based model to assess vaccination strategies for the COVID-19 pandemic by using Bayesian optimization," Chaos, Solitons & Fractals, Elsevier, vol. 181(C).
    3. Abd-Elhaleem, Sameh & Shoeib, Walaa & Sobaih, Abdel Azim, 2023. "A new power management strategy for plug-in hybrid electric vehicles based on an intelligent controller integrated with CIGPSO algorithm," Energy, Elsevier, vol. 265(C).
    4. Yang, Xu & Li, Hongru, 2023. "Multi-sample learning particle swarm optimization with adaptive crossover operation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 208(C), pages 246-282.
    5. Martín Montes Rivera & Carlos Guerrero-Mendez & Daniela Lopez-Betancur & Tonatiuh Saucedo-Anaya, 2024. "Dynamical Sphere Regrouping Particle Swarm Optimization Programming: An Automatic Programming Algorithm Avoiding Premature Convergence," Mathematics, MDPI, vol. 12(19), pages 1-53, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:20:p:4339-:d:1262649. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.