IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v12y2024i18p2900-d1479917.html
   My bibliography  Save this article

Evolutionary Game and Simulation Analysis of New-Energy Vehicle Promotion in China Based on Reward and Punishment Mechanisms

Author

Listed:
  • Rongjiang Cai

    (School of Economics and Management, Ningbo University of Technology, Ningbo 315211, China
    Faculty of Humanities and Social Sciences, Macao Polytechnic University, Macao 999078, China)

  • Tao Zhang

    (Faculty of Humanities and Social Sciences, Macao Polytechnic University, Macao 999078, China)

  • Xi Wang

    (Faculty of Humanities and Social Sciences, Macao Polytechnic University, Macao 999078, China)

  • Qiaoran Jia

    (Faculty of Humanities and Social Sciences, Macao Polytechnic University, Macao 999078, China)

  • Shufang Zhao

    (Faculty of Humanities and Social Sciences, Macao Polytechnic University, Macao 999078, China)

  • Nana Liu

    (School of Economics and Management, Nanjing Institute of Technology, Nanjing 211167, China)

  • Xiaoguang Wang

    (School of Mathematics and Information Engineering, Lianyungang Normal College, Lianyungang 222000, China)

Abstract

In China, new-energy vehicles are viewed as the ultimate goal for the automobile industry, given the current focus on the “dual-carbon” target. Therefore, it is important to promote the sustainable development of this new-energy market and ensure a smooth transition from fuel-driven vehicles to new-energy vehicles. This study constructs a tripartite evolutionary game model involving vehicle enterprises, consumers, and the government. It improves the tripartite evolutionary game through the mechanisms of dynamic and static rewards and punishments, respectively, using real-world data. The results show the following. (1) A fluctuation is present in the sales of new-energy vehicles by enterprises and the active promotional behavior of the government. This fluctuation leads to instability, and the behavior is difficult to accurately predict, which is not conducive new-energy vehicles’ promotion and sales. (2) A static reward and punishment mechanism can change the fluctuation threshold or peak value. Nevertheless, the stability of the system’s strategy is not the main reason that the government has been actively promoting it for a long time. However, enterprises are still wavering between new-energy and fuel vehicles. (3) The linear dynamic reward and punishment mechanism also has its defects. Although they are considered the stability control strategy of the system, they are still not conducive to stability. (4) The nonlinear dynamic reward and punishment mechanism can help the system to achieve the ideal stabilization strategy.

Suggested Citation

  • Rongjiang Cai & Tao Zhang & Xi Wang & Qiaoran Jia & Shufang Zhao & Nana Liu & Xiaoguang Wang, 2024. "Evolutionary Game and Simulation Analysis of New-Energy Vehicle Promotion in China Based on Reward and Punishment Mechanisms," Mathematics, MDPI, vol. 12(18), pages 1-24, September.
  • Handle: RePEc:gam:jmathe:v:12:y:2024:i:18:p:2900-:d:1479917
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/12/18/2900/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/12/18/2900/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Liu, Changyu & Song, Yadong & Wang, Wei & Shi, Xunpeng, 2023. "The governance of manufacturers’ greenwashing behaviors: A tripartite evolutionary game analysis of electric vehicles," Applied Energy, Elsevier, vol. 333(C).
    2. Yu, Liukai & Zheng, Junjun & Ma, Gang & Jiao, Yangyang, 2023. "Analyzing the evolution trend of energy conservation and carbon reduction in transportation with promoting electrification in China," Energy, Elsevier, vol. 263(PD).
    3. Gang Li & Mengyu Lu & Sen Lai & Yonghong Li, 2023. "Research on Power Battery Recycling in the Green Closed-Loop Supply Chain: An Evolutionary Game-Theoretic Analysis," Sustainability, MDPI, vol. 15(13), pages 1-18, July.
    4. Shanyong Wang & Jin Fan & Dingtao Zhao & Yanrui Wu, 2015. "The Impact of Government Subsidies or Penalties for New-energy Vehicles A Static and Evolutionary Game Model Analysis," Journal of Transport Economics and Policy, University of Bath, vol. 49(1), pages 98-114, January.
    5. Li, Kun & Dong, Feng, 2022. "Government strategy for banning gasoline vehicles: Evidence from tripartite evolutionary game," Energy, Elsevier, vol. 254(PA).
    6. Tan, Bing Qing & Kang, Kai & Zhong, Ray Y., 2023. "Electric vehicle charging infrastructure investment strategy analysis: State-owned versus private parking lots," Transport Policy, Elsevier, vol. 141(C), pages 54-71.
    7. Zhangwei Feng & Na Luo & Timofey Shalpegin & Huan Cui, 2024. "The influence of carbon emission reduction instruments on blockchain technology adoption in recycling batteries of the new energy vehicles," International Journal of Production Research, Taylor & Francis Journals, vol. 62(3), pages 891-908, February.
    8. Bengang Gong & Xuan Xia & Jinshi Cheng, 2020. "Supply-Chain Pricing and Coordination for New Energy Vehicles Considering Heterogeneity in Consumers’ Low Carbon Preference," Sustainability, MDPI, vol. 12(4), pages 1-14, February.
    9. Tanimoto, Jun & Futamata, Masanori & Tanaka, Masaki, 2020. "Automated vehicle control systems need to solve social dilemmas to be disseminated," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
    10. Shao, Yanmin & Chen, Zhongfei, 2022. "Can government subsidies promote the green technology innovation transformation? Evidence from Chinese listed companies," Economic Analysis and Policy, Elsevier, vol. 74(C), pages 716-727.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Changyu & Gong, Wanrong & Dong, Guanglong & Ji, Qiang, 2024. "Regulation of environmental, social and governance disclosure greenwashing behaviors considering the risk preference of enterprises," Energy Economics, Elsevier, vol. 135(C).
    2. Zhang, Mingye & Yang, Min & Gao, Yangfan, 2024. "Tripartite evolutionary game and simulation analysis of electric bus charging facility sharing under the governmental reward and punishment mechanism," Energy, Elsevier, vol. 307(C).
    3. Hongxia Sun & Yao Wan & Huirong Lv, 2020. "System Dynamics Model for the Evolutionary Behaviour of Government Enterprises and Consumers in China’s New Energy Vehicle Market," Sustainability, MDPI, vol. 12(4), pages 1-21, February.
    4. Zhe Xu & Ying Wang & Xiaoliang Shi & Yingying Qiu & Chunzi Su & Dan He, 2025. "The Impact of Environmental Subsidies and Enforcement on Green Innovation: Evidence from Heavy-Polluting Enterprises in China," Sustainability, MDPI, vol. 17(3), pages 1-25, February.
    5. Yinglin Wang & Leqi Chen & Jiaxin Zhuang, 2024. "Research on ESG Investment Efficiency Regulation from the Perspective of Reciprocity and Evolutionary Game," Computational Economics, Springer;Society for Computational Economics, vol. 64(3), pages 1665-1695, September.
    6. Mantas Svazas & Yuriy Bilan & Valentinas Navickas, 2024. "Research Directions of the Energy Transformation Impact on the Economy in the Aspect of Asset Analysis," Sustainability, MDPI, vol. 16(6), pages 1-21, March.
    7. Liu, Yajie & Dong, Feng & Wang, Yulong & Li, Jingyun & Qin, Chang, 2023. "Assessment of the energy-saving and environment effects of China's gasoline vehicle withdrawal under the impact of geopolitical risks," Resources Policy, Elsevier, vol. 86(PB).
    8. Yan, Chen & Ji, Yaxing & Chen, Rui, 2023. "Research on the mechanism of selective industrial policies on enterprises' innovation performance ——Evidence from China's photovoltaic industry," Renewable Energy, Elsevier, vol. 215(C).
    9. Han, Yajie & Han, Liyan & Liu, Chengkun & Wang, Qisong, 2024. "How does government R&D subsidies affect enterprises’ viability? An investigation on inverted U-shaped relationship," Finance Research Letters, Elsevier, vol. 70(C).
    10. Wenhui Zhao & Yimeng Liu & Jiansheng Hou & Lifang Liu, 2023. "Impact of Carbon Trading Mechanism Considering Blockchain Technology on the Evolution of New Energy Vehicle Industry in the Post-Subsidy Era," Sustainability, MDPI, vol. 15(17), pages 1-18, September.
    11. Cong Wang & Zongbao Zou & Shidao Geng, 2021. "Green Technology Investment in a Decentralized Supply Chain under Demand Uncertainty," Sustainability, MDPI, vol. 13(7), pages 1-25, March.
    12. Zhou, Chao & Lin, Feng, 2024. "Does global diversification promote or hinder green innovation? Evidence from Chinese multinational corporations," Technovation, Elsevier, vol. 129(C).
    13. Zhang, Yijun & Meng, Zhenzhen & Song, Yi, 2023. "Digital transformation and metal enterprise value: Evidence from China," Resources Policy, Elsevier, vol. 87(PB).
    14. Tiansheng Yang & Ken Peattie & Jean-Paul Skeete & Nicole Koenig-Lewis, 2024. "Navigating Transitions: How Electric Vehicle Sharing Is Shaping Sustainable Mobility in Chinese Cities," Sustainability, MDPI, vol. 16(19), pages 1-21, September.
    15. Wang, Weiping & Wang, Chunyang & Wang, Zhen & Han, Baijing & He, Chang & Cheng, Jun & Luo, Xiong & Yuan, Manman & Kurths, Jürgen, 2021. "Nonlinear consensus-based autonomous vehicle platoon control under event-triggered strategy in the presence of time delays," Applied Mathematics and Computation, Elsevier, vol. 404(C).
    16. Xiaoyuan Feng & Yue Chen & Hongbo Li & Tian Ma & Yilong Ren, 2023. "Gated Recurrent Graph Convolutional Attention Network for Traffic Flow Prediction," Sustainability, MDPI, vol. 15(9), pages 1-13, May.
    17. Yang, Fang & Ma, Yang & Tang, Xi & Ye, Xinhai & Chen, Xiaoye & Zhang, Ruochen, 2024. "Listing on the stock exchange and firm innovation," Finance Research Letters, Elsevier, vol. 66(C).
    18. Zhang, Ping & Wang, Yiru & Gao, Jieying, 2023. "Going public and innovation: Evidence from the ChiNext stock market," Economic Analysis and Policy, Elsevier, vol. 80(C), pages 586-613.
    19. Nan Xu & Yaoqun Xu & Haiyan Zhong, 2023. "Pricing Decisions for Power Battery Closed-Loop Supply Chains with Low-Carbon Input by Echelon Utilization Enterprises," Sustainability, MDPI, vol. 15(23), pages 1-30, December.
    20. Tanaka, Masaki & Tanimoto, Jun, 2024. "A new microscopic traffic-flow model based on the spatiotemporal continuous system concept considering nonlinear human response," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 648(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:12:y:2024:i:18:p:2900-:d:1479917. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.