IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v78y2008i13p1869-1877.html
   My bibliography  Save this article

Hausdorff moment problem: Reconstruction of probability density functions

Author

Listed:
  • Mnatsakanov, Robert M.

Abstract

The problem of recovering a moment-determinate probability density function (pdf) from its moments is studied. The proposed construction provides a method for recovery of different pdfs via simple transformations of the moment sequences. Uniform and L1-rates of convergence of moment-recovered pdfs are obtained. Finally, some applications and examples are briefly discussed.

Suggested Citation

  • Mnatsakanov, Robert M., 2008. "Hausdorff moment problem: Reconstruction of probability density functions," Statistics & Probability Letters, Elsevier, vol. 78(13), pages 1869-1877, September.
  • Handle: RePEc:eee:stapro:v:78:y:2008:i:13:p:1869-1877
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-7152(08)00053-9
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gwo Dong Lin, 1997. "On the moment problems," Statistics & Probability Letters, Elsevier, vol. 35(1), pages 85-90, August.
    2. Mnatsakanov, Robert M., 2008. "Hausdorff moment problem: Reconstruction of distributions," Statistics & Probability Letters, Elsevier, vol. 78(12), pages 1612-1618, September.
    3. Chen, Song Xi, 1999. "Beta kernel estimators for density functions," Computational Statistics & Data Analysis, Elsevier, vol. 31(2), pages 131-145, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mnatsakanov, Robert M. & Li, Shengqiao, 2013. "The Radon transform inversion using moments," Statistics & Probability Letters, Elsevier, vol. 83(3), pages 936-942.
    2. Ludovic Cal`es & Apostolos Chalkis & Ioannis Z. Emiris, 2021. "The cross-sectional distribution of portfolio returns and applications," Papers 2105.06573, arXiv.org.
    3. Calès, Ludovic & Chalkis, Apostolos & Emiris, Ioannis Z., 2019. "On the cross-sectional distribution of portfolio returns," JRC Working Papers in Economics and Finance 2019-11, Joint Research Centre, European Commission.
    4. Weimei Li & Leifu Gao, 2024. "Research on Risk-Averse Procurement Optimization of Emergency Supplies for Mine Thermodynamic Disasters," Mathematics, MDPI, vol. 12(14), pages 1-17, July.
    5. Mnatsakanov, Robert & Sarkisian, Khachatur, 2012. "Varying kernel density estimation on R+," Statistics & Probability Letters, Elsevier, vol. 82(7), pages 1337-1345.
    6. Hansjörg Albrecher & José Carlos Araujo-Acuna, 2022. "On The Randomized Schmitter Problem," Methodology and Computing in Applied Probability, Springer, vol. 24(2), pages 515-535, June.
    7. Gzyl, Henryk & Novi Inverardi, Pierluigi & Tagliani, Aldo, 2015. "Entropy and density approximation from Laplace transforms," Applied Mathematics and Computation, Elsevier, vol. 265(C), pages 225-236.
    8. Robert M. Mnatsakanov & Hansjoerg Albrecher & Stephane Loisel, 2022. "Approximations of Copulas via Transformed Moments," Methodology and Computing in Applied Probability, Springer, vol. 24(4), pages 3175-3193, December.
    9. Diel, Roland & Lerasle, Matthieu, 2018. "Non parametric estimation for random walks in random environment," Stochastic Processes and their Applications, Elsevier, vol. 128(1), pages 132-155.
    10. Mnatsakanov, Robert M. & Pommeret, Denys, 2024. "On recovering the relative distribution, Part 1: The moment-recovered approach," Statistics & Probability Letters, Elsevier, vol. 208(C).
    11. Mnatsakanov, Robert M. & Sarkisian, Khachatur & Hakobyan, Artak, 2015. "Approximation of the ruin probability using the scaled Laplace transform inversion," Applied Mathematics and Computation, Elsevier, vol. 268(C), pages 717-727.
    12. Mnatsakanov, Robert M., 2011. "Moment-recovered approximations of multivariate distributions: The Laplace transform inversion," Statistics & Probability Letters, Elsevier, vol. 81(1), pages 1-7, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mnatsakanov, Robert M., 2008. "Hausdorff moment problem: Reconstruction of distributions," Statistics & Probability Letters, Elsevier, vol. 78(12), pages 1612-1618, September.
    2. Bauwens, Luc & Giot, Pierre & Grammig, Joachim & Veredas, David, 2004. "A comparison of financial duration models via density forecasts," International Journal of Forecasting, Elsevier, vol. 20(4), pages 589-609.
    3. Bouezmarni, Taoufik & Rombouts, Jeroen V.K., 2010. "Nonparametric density estimation for positive time series," Computational Statistics & Data Analysis, Elsevier, vol. 54(2), pages 245-261, February.
    4. Myśliwski, Mateusz & Rostom, May, 2022. "Value of information, search, and competition in the UK mortgage market," Bank of England working papers 967, Bank of England.
    5. Hirukawa, Masayuki, 2010. "Nonparametric multiplicative bias correction for kernel-type density estimation on the unit interval," Computational Statistics & Data Analysis, Elsevier, vol. 54(2), pages 473-495, February.
    6. Ouimet, Frédéric & Tolosana-Delgado, Raimon, 2022. "Asymptotic properties of Dirichlet kernel density estimators," Journal of Multivariate Analysis, Elsevier, vol. 187(C).
    7. Bouezmarni, Taoufik & Van Bellegem, Sébastien, 2009. "Nonparametric Beta Kernel Estimator for Long Memory Time Series," IDEI Working Papers 633, Institut d'Économie Industrielle (IDEI), Toulouse.
    8. Hagmann, M. & Scaillet, O., 2007. "Local multiplicative bias correction for asymmetric kernel density estimators," Journal of Econometrics, Elsevier, vol. 141(1), pages 213-249, November.
    9. Fernandes, Marcelo & Grammig, Joachim, 2005. "Nonparametric specification tests for conditional duration models," Journal of Econometrics, Elsevier, vol. 127(1), pages 35-68, July.
    10. Nikolay Gospodinov & Masayuki Hirukawa, 2008. "Time Series Nonparametric Regression Using Asymmetric Kernels with an Application to Estimation of Scalar Diffusion Processes," CIRJE F-Series CIRJE-F-573, CIRJE, Faculty of Economics, University of Tokyo.
    11. Salvatore D. Tomarchio & Antonio Punzo, 2019. "Modelling the loss given default distribution via a family of zero‐and‐one inflated mixture models," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 182(4), pages 1247-1266, October.
    12. Ummul Abdul Rauf & Panlop Zeephongsekul, 2014. "Analysis of Rainfall Severity and Duration in Victoria, Australia using Non-parametric Copulas and Marginal Distributions," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(13), pages 4835-4856, October.
    13. Anderson, Gordon & Linton, Oliver & Whang, Yoon-Jae, 2012. "Nonparametric estimation and inference about the overlap of two distributions," Journal of Econometrics, Elsevier, vol. 171(1), pages 1-23.
    14. Grammig, Joachim G. & Peter, Franziska J., 2008. "International price discovery in the presence of market microstructure effects," CFR Working Papers 08-10, University of Cologne, Centre for Financial Research (CFR).
    15. Hazelton, Martin L. & Marshall, Jonathan C., 2009. "Linear boundary kernels for bivariate density estimation," Statistics & Probability Letters, Elsevier, vol. 79(8), pages 999-1003, April.
    16. Gaku Igarashi & Yoshihide Kakizawa, 2014. "On improving convergence rate of Bernstein polynomial density estimator," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 26(1), pages 61-84, March.
    17. Charpentier, Arthur & Flachaire, Emmanuel, 2015. "Log-Transform Kernel Density Estimation Of Income Distribution," L'Actualité Economique, Société Canadienne de Science Economique, vol. 91(1-2), pages 141-159, Mars-Juin.
    18. Song Li & Mervyn J. Silvapulle & Param Silvapulle & Xibin Zhang, 2015. "Bayesian Approaches to Nonparametric Estimation of Densities on the Unit Interval," Econometric Reviews, Taylor & Francis Journals, vol. 34(3), pages 394-412, March.
    19. Kairat Mynbaev & Carlos Martins-Filho, 2019. "Unified estimation of densities on bounded and unbounded domains," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 71(4), pages 853-887, August.
    20. Lu, Lu, 2015. "On the uniform consistency of the Bernstein density estimator," Statistics & Probability Letters, Elsevier, vol. 107(C), pages 52-61.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:78:y:2008:i:13:p:1869-1877. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.