IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1809.03641.html
   My bibliography  Save this paper

Model Risk Measurement under Wasserstein Distance

Author

Listed:
  • Yu Feng
  • Erik Schlogl

Abstract

The paper proposes a new approach to model risk measurement based on the Wasserstein distance between two probability measures. It formulates the theoretical motivation resulting from the interpretation of fictitious adversary of robust risk management. The proposed approach accounts for equivalent and non-equivalent probability measures and incorporates the economic reality of the fictitious adversary. It provides practically feasible results that overcome the restriction of considering only models implying probability measures equivalent to the reference model. The Wasserstein approach suits for various types of model risk problems, ranging from the single-asset hedging risk problem to the multi-asset allocation problem. The robust capital market line, accounting for the correlation risk, is not achievable with other non-parametric approaches.

Suggested Citation

  • Yu Feng & Erik Schlogl, 2018. "Model Risk Measurement under Wasserstein Distance," Papers 1809.03641, arXiv.org, revised Mar 2019.
  • Handle: RePEc:arx:papers:1809.03641
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1809.03641
    File Function: Latest version
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Tim Bollerslev & George Tauchen & Hao Zhou, 2009. "Expected Stock Returns and Variance Risk Premia," The Review of Financial Studies, Society for Financial Studies, vol. 22(11), pages 4463-4492, November.
    2. A. Ahmadi-Javid, 2012. "Addendum to: Entropic Value-at-Risk: A New Coherent Risk Measure," Journal of Optimization Theory and Applications, Springer, vol. 155(3), pages 1124-1128, December.
    3. Yuhong Xu, 2014. "Robust valuation and risk measurement under model uncertainty," Papers 1407.8024, arXiv.org.
    4. Gurdip Bakshi & Nikunj Kapadia, 2003. "Delta-Hedged Gains and the Negative Market Volatility Risk Premium," The Review of Financial Studies, Society for Financial Studies, vol. 16(2), pages 527-566.
    5. Low, Buen Sin & Zhang, Shaojun, 2005. "The Volatility Risk Premium Embedded in Currency Options," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 40(4), pages 803-832, December.
    6. A. Ahmadi-Javid, 2012. "Entropic Value-at-Risk: A New Coherent Risk Measure," Journal of Optimization Theory and Applications, Springer, vol. 155(3), pages 1105-1123, December.
    7. Paul Glasserman & Xingbo Xu, 2014. "Robust risk measurement and model risk," Quantitative Finance, Taylor & Francis Journals, vol. 14(1), pages 29-58, January.
    8. Carr, Peter & Wu, Liuren, 2016. "Analyzing volatility risk and risk premium in option contracts: A new theory," Journal of Financial Economics, Elsevier, vol. 120(1), pages 1-20.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yu Feng & Ralph Rudd & Christopher Baker & Qaphela Mashalaba & Melusi Mavuso & Erik Schlögl, 2021. "Quantifying the Model Risk Inherent in the Calibration and Recalibration of Option Pricing Models," Risks, MDPI, vol. 9(1), pages 1-20, January.
    2. Yu Feng, 2019. "Theory and Application of Model Risk Quantification," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 3-2019, January-A.
    3. M. Andrea Arias-Serna & Jean-Michel Loubes & Francisco J. Caro-Lopera, 2020. "Risk Measures Estimation Under Wasserstein Barycenter," Papers 2008.05824, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yu Feng, 2019. "Theory and Application of Model Risk Quantification," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 3-2019, January-A.
    2. Yu Feng & Ralph Rudd & Christopher Baker & Qaphela Mashalaba & Melusi Mavuso & Erik Schlögl, 2021. "Quantifying the Model Risk Inherent in the Calibration and Recalibration of Option Pricing Models," Risks, MDPI, vol. 9(1), pages 1-20, January.
    3. Markellos, Raphael N. & Psychoyios, Dimitris, 2018. "Interest rate volatility and risk management: Evidence from CBOE Treasury options," The Quarterly Review of Economics and Finance, Elsevier, vol. 68(C), pages 190-202.
    4. Sankar, Ganesh & Ramachandran, Shankar & Lukose P J, Jijo, 2020. "Dynamics of variance risk premium: Evidence from India," International Review of Economics & Finance, Elsevier, vol. 70(C), pages 321-334.
    5. Branger, Nicole & Muck, Matthias & Seifried, Frank Thomas & Weisheit, Stefan, 2017. "Optimal portfolios when variances and covariances can jump," Journal of Economic Dynamics and Control, Elsevier, vol. 85(C), pages 59-89.
    6. Della Corte, Pasquale & Sarno, Lucio & Tsiakas, Ilias, 2011. "Spot and forward volatility in foreign exchange," Journal of Financial Economics, Elsevier, vol. 100(3), pages 496-513, June.
    7. Thomas Kruse & Judith C. Schneider & Nikolaus Schweizer, 2021. "A Toolkit for Robust Risk Assessment Using F -Divergences," Management Science, INFORMS, vol. 67(10), pages 6529-6552, October.
    8. Ruan, Xinfeng & Zhang, Jin E., 2021. "The economics of the financial market for volatility trading," Journal of Financial Markets, Elsevier, vol. 52(C).
    9. Makam, Vaishno Devi & Millossovich, Pietro & Tsanakas, Andreas, 2021. "Sensitivity analysis with χ2-divergences," Insurance: Mathematics and Economics, Elsevier, vol. 100(C), pages 372-383.
    10. Christoffersen, Peter & Heston, Steven & Jacobs, Kris, 2010. "Option Anomalies and the Pricing Kernel," Working Papers 11-17, University of Pennsylvania, Wharton School, Weiss Center.
    11. Bollerslev, Tim & Gibson, Michael & Zhou, Hao, 2011. "Dynamic estimation of volatility risk premia and investor risk aversion from option-implied and realized volatilities," Journal of Econometrics, Elsevier, vol. 160(1), pages 235-245, January.
    12. Thibaut Lux & Antonis Papapantoleon, 2016. "Model-free bounds on Value-at-Risk using extreme value information and statistical distances," Papers 1610.09734, arXiv.org, revised Nov 2018.
    13. Gagnon, Marie-Hélène & Power, Gabriel J. & Toupin, Dominique, 2023. "The sum of all fears: Forecasting international returns using option-implied risk measures," Journal of Banking & Finance, Elsevier, vol. 146(C).
    14. Geert Bekaert & Eric C. Engstrom & Nancy R. Xu, 2022. "The Time Variation in Risk Appetite and Uncertainty," Management Science, INFORMS, vol. 68(6), pages 3975-4004, June.
    15. Alfredo Ibáñez, 2008. "The cross-section of average delta-hedge option returns under stochastic volatility," Review of Derivatives Research, Springer, vol. 11(3), pages 205-244, October.
    16. Ammann, Manuel & Buesser, Ralf, 2013. "Variance risk premiums in foreign exchange markets," Journal of Empirical Finance, Elsevier, vol. 23(C), pages 16-32.
    17. Mingbin Ben Feng & Eunhye Song, 2020. "Efficient Nested Simulation Experiment Design via the Likelihood Ratio Method," Papers 2008.13087, arXiv.org, revised May 2024.
    18. Anthony Coache & Sebastian Jaimungal, 2024. "Robust Reinforcement Learning with Dynamic Distortion Risk Measures," Papers 2409.10096, arXiv.org.
    19. Huimin Zhao & Jin E. Zhang & Eric C. Chang, 2013. "The Relation between Physical and Risk-neutral Cumulants," International Review of Finance, International Review of Finance Ltd., vol. 13(3), pages 345-381, September.
    20. Li, Zhenxiong & Yao, Xingzhi & Izzeldin, Marwan, 2023. "On the right jump tail inferred from the VIX market," International Review of Financial Analysis, Elsevier, vol. 86(C).

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1809.03641. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.