IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v12y2024i13p2119-d1429821.html
   My bibliography  Save this article

A New Strategy: Remaining Useful Life Prediction of Wind Power Bearings Based on Deep Learning under Data Missing Conditions

Author

Listed:
  • Xuejun Li

    (The Laboratory for Rotating Vibration Monitoring and Diagnostics Technology in Mechanical Industries, Foshan University, Foshan 528000, China)

  • Xu Lei

    (The Laboratory for Rotating Vibration Monitoring and Diagnostics Technology in Mechanical Industries, Foshan University, Foshan 528000, China)

  • Lingli Jiang

    (The Laboratory for Rotating Vibration Monitoring and Diagnostics Technology in Mechanical Industries, Foshan University, Foshan 528000, China)

  • Tongguang Yang

    (School of Mechanical Engineering and Automation, Northeastern University, Shenyang 110819, China)

  • Zhenyu Ge

    (The Laboratory for Rotating Vibration Monitoring and Diagnostics Technology in Mechanical Industries, Foshan University, Foshan 528000, China)

Abstract

With its formidable nonlinear mapping capabilities, deep learning has been widely applied in bearing remaining useful life (RUL) prediction. Given that equipment in actual work is subject to numerous disturbances, the collected data tends to exhibit random missing values. Furthermore, due to the dynamic nature of wind turbine environments, LSTM models relying on manually set parameters exhibit certain limitations. Considering these factors can lead to issues with the accuracy of predictive models when forecasting the remaining useful life (RUL) of wind turbine bearings. In light of this issue, a novel strategy for predicting the remaining life of wind turbine bearings under data scarcity conditions is proposed. Firstly, the average similarity (AS) is introduced to reconstruct the discriminator of the Generative Adversarial Imputation Nets (GAIN), and the adversarial process between the generative module and the discriminant is strengthened. Based on this, the dung beetle algorithm (DBO) is used to optimize multiple parameters of the long-term and short-term memory network (LSTM), and the complete data after filling is used as the input data of the optimized LSTM to realize the prediction of the remaining life of the wind power bearing. The effectiveness of the proposed method is verified by the full-life data test of bearings. The results show that, under the condition of missing data, the new strategy of AS-GAIN-LSTM is used to predict the RUL of wind turbine bearings, which has a more stable prediction performance.

Suggested Citation

  • Xuejun Li & Xu Lei & Lingli Jiang & Tongguang Yang & Zhenyu Ge, 2024. "A New Strategy: Remaining Useful Life Prediction of Wind Power Bearings Based on Deep Learning under Data Missing Conditions," Mathematics, MDPI, vol. 12(13), pages 1-22, July.
  • Handle: RePEc:gam:jmathe:v:12:y:2024:i:13:p:2119-:d:1429821
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/12/13/2119/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/12/13/2119/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Li, Xiang & Zhang, Wei & Ding, Qian, 2019. "Deep learning-based remaining useful life estimation of bearings using multi-scale feature extraction," Reliability Engineering and System Safety, Elsevier, vol. 182(C), pages 208-218.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wei, Yupeng & Wu, Dazhong & Terpenny, Janis, 2024. "Remaining useful life prediction using graph convolutional attention networks with temporal convolution-aware nested residual connections," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    2. Yi Lyu & Qichen Zhang & Zhenfei Wen & Aiguo Chen, 2022. "Remaining Useful Life Prediction Based on Multi-Representation Domain Adaptation," Mathematics, MDPI, vol. 10(24), pages 1-18, December.
    3. Shujie Yang & Peikun Yang & Hao Yu & Jing Bai & Wuwei Feng & Yuxiang Su & Yulin Si, 2022. "A 2DCNN-RF Model for Offshore Wind Turbine High-Speed Bearing-Fault Diagnosis under Noisy Environment," Energies, MDPI, vol. 15(9), pages 1-16, May.
    4. Tang, Ting & Yuan, Huimei, 2022. "A hybrid approach based on decomposition algorithm and neural network for remaining useful life prediction of lithium-ion battery," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    5. Feiyue Deng & Yan Bi & Yongqiang Liu & Shaopu Yang, 2021. "Deep-Learning-Based Remaining Useful Life Prediction Based on a Multi-Scale Dilated Convolution Network," Mathematics, MDPI, vol. 9(23), pages 1-17, November.
    6. Xu, Zhaoyi & Saleh, Joseph Homer, 2021. "Machine learning for reliability engineering and safety applications: Review of current status and future opportunities," Reliability Engineering and System Safety, Elsevier, vol. 211(C).
    7. Yiwei Wang & Jian Zhou & Lianyu Zheng & Christian Gogu, 2022. "An end-to-end fault diagnostics method based on convolutional neural network for rotating machinery with multiple case studies," Journal of Intelligent Manufacturing, Springer, vol. 33(3), pages 809-830, March.
    8. Hua-Xi Zhou & Chang-Guang Zhou & Hu-Tian Feng, 2023. "An integrated lifetime prediction method for double-nut ball screws subject to preload loss failure mode," Journal of Risk and Reliability, , vol. 237(6), pages 1248-1258, December.
    9. Cheng, Han & Kong, Xianguang & Wang, Qibin & Ma, Hongbo & Yang, Shengkang, 2022. "The two-stage RUL prediction across operation conditions using deep transfer learning and insufficient degradation data," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    10. Fan, Linchuan & Chai, Yi & Chen, Xiaolong, 2022. "Trend attention fully convolutional network for remaining useful life estimation," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    11. Zuo, Tao & Zhang, Kai & Zheng, Qing & Li, Xianxin & Li, Zhixuan & Ding, Guofu & Zhao, Minghang, 2023. "A hybrid attention-based multi-wavelet coefficient fusion method in RUL prognosis of rolling bearings," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    12. Theissler, Andreas & Pérez-Velázquez, Judith & Kettelgerdes, Marcel & Elger, Gordon, 2021. "Predictive maintenance enabled by machine learning: Use cases and challenges in the automotive industry," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    13. Wang, Yuan & Lei, Yaguo & Li, Naipeng & Yan, Tao & Si, Xiaosheng, 2023. "Deep multisource parallel bilinear-fusion network for remaining useful life prediction of machinery," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    14. Berndt Jesenko & Christian Schlögl, 2021. "The effect of web of science subject categories on clustering: the case of data-driven methods in business and economic sciences," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(8), pages 6785-6801, August.
    15. Kamariotis, Antonios & Tatsis, Konstantinos & Chatzi, Eleni & Goebel, Kai & Straub, Daniel, 2024. "A metric for assessing and optimizing data-driven prognostic algorithms for predictive maintenance," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    16. Prashant Kumar & Salman Khalid & Heung Soo Kim, 2023. "Prognostics and Health Management of Rotating Machinery of Industrial Robot with Deep Learning Applications—A Review," Mathematics, MDPI, vol. 11(13), pages 1-37, July.
    17. Nikhil M. Thoppil & V. Vasu & C. S. P. Rao, 2021. "Health indicator construction and remaining useful life estimation for mechanical systems using vibration signal prognostics," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 12(5), pages 1001-1010, October.
    18. Guan, Yang & Meng, Zong & Sun, Dengyun & Liu, Jingbo & Fan, Fengjie, 2021. "2MNet: Multi-sensor and multi-scale model toward accurate fault diagnosis of rolling bearing," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    19. Park, Chan Hee & Kim, Hyeongmin & Suh, Chaehyun & Chae, Minseok & Yoon, Heonjun & Youn, Byeng D., 2022. "A health image for deep learning-based fault diagnosis of a permanent magnet synchronous motor under variable operating conditions: Instantaneous current residual map," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    20. Xiangxi Du & Yanhua Sun, 2021. "Performance for rotor system of hybrid electromagnetic bearing and elastic foil gas bearing with dynamic characteristics analysis under deep learning," PLOS ONE, Public Library of Science, vol. 16(3), pages 1-16, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:12:y:2024:i:13:p:2119-:d:1429821. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.